回答:大家好,我们以java排序算法为例,来看看面试中常见的算法第一、基数排序算法该算法将数值按照个位数拆分进行位数比较,具体代码如下:第二、桶排序算法该算法将数值序列分成最大值+1个桶子,然后递归将数值塞进对应值的桶里,具体代码如下:第三、计数排序算法该算法计算数值序列中每个数值出现的次数,然后存放到单独的数组中计数累加,具体代码如下:第四、堆排序算法该算法将数值序列中最大值挑选出来,然后通过递归将剩...
回答:我们已经上线了好几个.net core的项目,基本上都是docker+.net core 2/3。说实话,.net core的GC非常的优秀,基本上不需要像做Java时候,还要做很多的优化。因此没有多少人研究很正常。换句话,如果一个GC还要做很多优化,这肯定不是好的一个GC。当然平时编程的时候,常用的非托管的对象处理等等还是要必须掌握的。
... 我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得损函数最小。 3.3 均方误差MSE最小化 二维空间求均方差 上图是参考吴恩达视频的图片, 我们会发现随着theta1的不断变化, 均方误差MSE会找到一...
... 我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得损函数最小。 3.3 均方误差MSE最小化 二维空间求均方差 上图是参考吴恩达视频的图片, 我们会发现随着theta1的不断变化, 均方误差MSE会找到一...
...试使用一条直线来拟合数据,使所有点到直线的距离之和最小。实际上,线性回归中通常使用残差平方和,即点到直线的平行于y轴的距离而不用垂线距离,残差平方和除以样本量n就是均方误差。均方误差作为线性回归模型的代...
...分比误差(Mean Absolute Percentage Error)等。2.5.7 交叉熵为了最小化代价函数,在 i 个训练样本的情况下,代价函数为:3、卷积网络的学习3.1 前馈推断过程卷积网络的前馈传播过程可以从数学上解释为将输入值与随机初始化的权重...
...来生成图像中的细节。传统的方法使用的代价函数一般是最小均方差(MSE),即该代价函数使重建结果有较高的信噪比,但是缺少了高频信息,出现过度平滑的纹理。SRGAN认为,应当使重建的高分辨率图像与真实的高分辨率图像...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...