回答:大家好,我们以java排序算法为例,来看看面试中常见的算法第一、基数排序算法该算法将数值按照个位数拆分进行位数比较,具体代码如下:第二、桶排序算法该算法将数值序列分成最大值+1个桶子,然后递归将数值塞进对应值的桶里,具体代码如下:第三、计数排序算法该算法计算数值序列中每个数值出现的次数,然后存放到单独的数组中计数累加,具体代码如下:第四、堆排序算法该算法将数值序列中最大值挑选出来,然后通过递归将剩...
回答:我们已经上线了好几个.net core的项目,基本上都是docker+.net core 2/3。说实话,.net core的GC非常的优秀,基本上不需要像做Java时候,还要做很多的优化。因此没有多少人研究很正常。换句话,如果一个GC还要做很多优化,这肯定不是好的一个GC。当然平时编程的时候,常用的非托管的对象处理等等还是要必须掌握的。
回答:后台不等于内核开发,但了解内核肯定有助于后台开发,内核集精ucloud大成,理解内核精髓,你就离大咖不远了。程序逻辑抽取器支持c/c++/esqlc,数据库支持oracle/informix/mysql,让你轻松了解程序干了什么。本站正在举办注解内核赢工具活动,你对linux kernel的理解可以传递给她人。
...,这种原则称为正则化。 一般来说,监督学习可以看做最小化下面的目标函数.其中,第一项L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样本的预测值f(xi;w)和真实的标签yi之前的误差.第二项,也就是对参数w的规则化函...
...矩形,它不考虑对象的旋转。因此,边界矩形的面积不会最小.cv.boundingRect()设(x,y)为矩形的左上角坐标,(w,h)为宽度和高度代码: import cv2 import numpy as np img = cv2.imread(img7.png) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thres...
...数,在数学上很美,因为神经元的学习机制是基于将错误最小化的微积分,而微积分我们都很熟悉了。如果我们多思考一下 「自适应(ADALINE)」,就会有进一步的洞见:为大量输入找到一组权重真的只是一种线性回归。再一次...
...连续体,而不仅仅是神经网络。 在前面的文章中,普通最小二乘算法完成了这一工作,它发现了使误差平方和(即最小二乘)最小化的系数组合。 我们的神经网络回归器会做同样的事情。 它将迭代训练数据提取特征值,计...
...归的具体示例下(即用直线进行预测),计算梯度是求解最小二乘问题的方法。在优化问题中,除了使用梯度求解较佳解决方案之外,还有许多其他可供选择的方法。事实上,随机梯度下降可能是最基本的优化方法之一,所以人...
...体情况下(如对一条线进行拟合预测),计算梯度是求解最小二乘问题。在优化领域,除了使用梯度找到最优解之外,还有许多其他方法。不过,事实上,随机梯度下降可能是最基本的优化方法之一。所以它只是我们能想到的很...
...情况下,数值的扩散似乎有相对相等的变化。 使用普通最小二乘算法的线性回归的另一个重要假设是沿点的均匀随机分布。 使用逐步回归建立一个健壮的模型 一个强大的线性回归模型必须选取有意义的、重要的统计指标的...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...