回答:数据分析的应用几乎是无行业和人群限制的。数据分析的魅力体现在数据的价值和创新的能力,运用数据的能力越来越成为基础的职业技能,因此任何有兴趣和需求的人士都可以进入这个领域。涉及到数据分析学习和工具的选择, 那么久可以从知识和应用的角度入门数据分析的路径。01SQL数据库语言作为数据分析师,我们首先要知道如何获取数据,其中最常用的就是从关系型数据库中取数。因此,你可以不会R,但不能不会SQL。大数据...
回答:数据分析工具其实有很多种,对应不同类型的使用者也有各自适合的选择。例如懂数据算法计算机语言的人,可能给他一款,填写算法代码流畅的分析软件就是有效。掌握了数据分析专业技能的人,强大的分析功能能将工作做到事半功倍,不管看着功能多复杂。还有就是我这种非计算机专业出身,非统计学出身,但工作做还需要对大量数据进行分析的人。如果你跟我一样,那么可以看下我的回答。我总结了下,我以前找分析工具的时候,自己先想了几...
回答:零基础数据分析对于这个问题,我将拆分为三个方面,行业前景、必备技能以及工作求职。首先,就行业而言,数据分析岗位是工作中最核心的竞争力之一,在互联网下半场,各大企业都进行数字化转型,对数字分析人才的需求也越来越旺,数字分析岗位一般月薪都在10k以上,一线城市在20k-40k左右,其前景还是不可估量的。其次,对于必备技能来说,一般是需要掌握Excel、SPSS,主流SQL语言,能够使用python、R...
回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:基础的小伙伴应该该怎么自学数据分析呢?我会从学习方式、学习内容、面试准备这三项内容展开介绍,那么废话不多说,我们直接进入正题。一、学习方式我们可以将学习方式划分为2类:①裸辞学习 ②在职学习一般情况不建议裸辞,因为裸辞的小伙伴在求职的时候会比较被动:心态问题 ,如果长时间找不到工作,要承受很大的心理压力;HR压制 ,这里指HR会压制你的薪资,比如面试官会问,什么时间能到岗,你会很急切的回复说,明天...
...:新的时代-41页.pdf 全球石油与天然气行业:上调布伦特原油和NBP天然气价格预测-26页.pdf 石油与天然气行业-全球石油基本面:常见问题解答-38页.pdf 全球可持续产业-天然气会成为下一个煤炭吗?-33页.pdf 石油天然气行业化工春...
...紧迟迟未改善,动力煤偏强运行-12页.pdf 供需分歧加剧,原油高位振荡-33页.pdf 保险行业2021年春季策略报告:需求升级,模式待改-34页.pdf 全市场估值与行业比较观察-21页.pdf 全市场估值跟踪:市场估值水平概览-17页.pdf 全市场科...
...成器。可输入人名生成藏头、藏尾、...——接口地址国际原油价格查询:WTI和布伦特的油价查询——接口地址水质查询:根据地点和时间查询水质——接口地址条码生成:提供EAN_8、EAN_13、CODE_...——接口地址条码识别:提供EAN_8、EAN_1...
数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:分析目的不明确分析方法...
...并,打通数据孤岛以获得数据的统一视图,方便业务进行数据分析决策; 助力企业灵活调整业务架构,优化现有的数据库服务; 快速实现分库分表合并、自定义冲突处理策略、方便业务构建数据看板。一站式数据集成解决方案多...
摘要 在做数据分析的过程中,经常会想数据分析到底是什么?为什么要做数据数据分析?数据分析到底该怎么做?等这些问题。对于这些问题,一开始也只是有个很笼统的认识。 最近这两天,读了一下早就被很多人推荐的《...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...