...的类别?由于这是一个如此常见的问题,并且是关于神经网络/深度学习目标检测器实际工作的一个误解,所以我决定在今天的博客中重温深度学习目标检测的话题。具体地,你将在这篇文章中学到以下内容:图像分类和目标检...
...先由算法生成一系列作为样本的候选框,再通过卷积神经网络进行样本分类;后者则不用产生候选框,直接将目标边框定位的问题转化为回归问题处理。正是由于两种方法的差异,在性能上也有不同,前者在检测准确率和定位精...
...、孙富春、Anbang Yao、刘华平、Ming Lu 和陈玉荣。基于深度网络的目标对象检测可以分为 region-based 和 region-free 两种方法目标对象检测领域正在取得重大进展,这主要得益于深度网络。当前较好的基于深度网络的目标检测框架可以...
...近日联合发布了一篇论文,名为《利用空间融合卷积神经网络通过面部关键点进行伪装人脸识别Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network》,该论文利用空间融合卷积神经网络为刑侦过程的人...
...这种技术让两种人工智能算法相互对抗。现在,深度神经网络已经被应用于各种各样问题,如自动驾驶车辆、癌症检测等,但是我们迫切需要更好地理解这些模型容易受到攻击的方式。在图像识别领域,在图像中添加小的、往往...
...积模型 [2,3]。Scale[4,5,6]、context[7]、采样和深度联合卷积网络在 DET 任务中得到了有效的使用。同时他们的得分排名也使用了物体概率估计。[1] Residual Attention Network for Image Classification[J]. arXiv:1704.06904, 2017. [2] Deep residual learning for...
...些区域被转换为固定大小的图像,并分别馈送到卷积神经网络中。该网络架构后面会跟几个全连接层,以实现目标分类并提炼边界框。使用候选区域、CNN、仿射层来定位目标。以下是 R-CNN 整个系统的流程图:通过使用更少且更...
...教程包含五个部分: 1. YOLO 的工作原理 2. 创建 YOLO 网络层级 3. 实现网络的前向传播 4. objectness 置信度阈值和非极大值抑制 5. 设计输入和输出管道 所需背景知识 在学习本教程之前,你需要了解: 卷积神经网络...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...