回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:当然有啦,我一般都是用黑狐文字提取神器 小程序,使用简单,只要把你的英文音频导入进去,然后就可以看到系统语音识别后,转成成文字的形式,最后如果想要进行中英互译也可以哦,点击立即转化,语音准确率非常高,可以达到98%以上,几乎都不用二次修改,香!除了语音转文字,它还能够视频转文字呢!支持的格式非常多,比如wav、mp3、m4a、flv、mp4、wma、3gp、amr、aac、ogg-opus、fla...
回答:学习软件开发确实是需要一定的英语基础的,但是所需要的英语知识和能力与高考英语、四六级英语都不同。软件开发需要的英语以专业词汇为主,不侧重听说读写译的综合能力。而且专业词汇的数量比较少,大约在300-500。注意虽然数量不多,但是不是初学者需要掌握的简单的单词,大多是高考英语或四六级英语中的单词,比如battery、parachute、command、byte、compile、gateway、fre...
这是一篇总结文,总结我看过的几篇用GAN做图像翻译的文章的套路。首先,什么是图像翻译?为了说清楚这个问题,下面我给出一个不严谨的形式化定义。我们先来看两个概念。第一个概念是图像内容(content) ,它是图像...
...络由卷积层和全连接层构成,网络的输入是16x16的归一化图像,输出为0-9这10个类,中间是3个隐含层。这个网络的结构如下图所示: 这篇文章提出了权重共享(weight sharing)和特征图像(feature map)的概念,这些概念被沿用...
...,又或是实际场景中更复杂的情况,比如生成不同人脸的图像。这时候,作为具有universal approximation性质的神经网络是一个看上去不错的选择[1]:所以虽然GAN里面同时包含了生成网络和判别网络,但本质来说GAN的目的还是生成模...
...段做初步清理。比较简单的一种处理方法是采用33矩阵对图像进行平滑处理,即对每个像素取他所在33矩阵所有点的RGB均值,分别作为新的RGB值。稍微做点优化,取3*3矩阵中RGB三维欧式距离最接近均值的点作为新值。 1.2 灰度化在...
...段做初步清理。比较简单的一种处理方法是采用33矩阵对图像进行平滑处理,即对每个像素取他所在33矩阵所有点的RGB均值,分别作为新的RGB值。稍微做点优化,取3*3矩阵中RGB三维欧式距离最接近均值的点作为新值。 1.2 灰度化 ...
...作为实体和语义类的名字、描述、解释等,可以由文本、图像、音视频等来表达。属性(值): 从一个实体指向它的属性值。不同的属性类型对应于不同类型属性的边。属性值主要指对象指定属性的值。如图1所示的面积、人...
...注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。本文以机器翻译为例,深入浅出地介绍了深度学习中注...
OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR)。可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制。 Tesseract 是一个OCR 库,...
...弄网络通过精心计算得到的。但是问题依然存在:右边的图像显然是一张金鱼而不是雏菊。显然,像集成模型,多扫视后投票和无监督预训练的策略都不能解决这个漏洞。使用高度正则化会有所帮助,但会影响判断不含噪声图像...
...弄网络通过精心计算得到的。但是问题依然存在:右边的图像显然是一张金鱼而不是雏菊。显然,像集成模型,多扫视后投票和无监督预训练的策略都不能解决这个漏洞。使用高度正则化会有所帮助,但会影响判断不含噪声图像...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...