回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
... 人脸识别是近年来模式识别、图像处理、机器视觉、神经网络以及认知科学等领域研究的热点课题之一,被广泛应用于公共安全(罪犯识别等)、安全验证系统、信用卡验证、医学、档案管理、视频会...
...局损失函数过程包括特征提取,识别器,环境后处理器(图像模型)问题:通过图像模型进行梯度后向传播。浅层结构化预测方法:有NLL损失的条件随机域,有Hinge Loss的较大边缘马尔可夫网络和隐支持向量机(Latent SVM),有感...
...经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功识别人脸,物体和交通标志。图1如图1所示,卷积神经...
.../10.1145/3474085.3475606 一、任务概述 视觉问答任务(VQA):将图像和关于图像的自然语言问题作为输入,生成自然语言答案作为输出。 文本视觉问答任务(TextVQA):面向文字识别的问答任务。 二、Baseline 2.1 Baseline 1: Look, Read, Reaso...
...了双路径 GAN(TP-GAN),通过单一侧面照片合成正面人脸图像,取得了当前较好的结果。研究人员提出了一个像人类一样能够考虑整体和局部信息的 GAN 结构,合成的图像非常逼真且很好地保留了身份特征,并且可以处理大量不同...
...性路由代替了较大池化。与CNN类似,更高层的网络观察了图像中更大的范围,不过由于不再是较大池化,所以位置信息一直都得到了保留。对于较低的层,空间位置的判断也只需要看是哪些胶囊被激活了。这个网络中最底层的多...
...道路检测,一般包括6部分:摄像头校正(camera calibration)、图像失真校正(distortion correction)、色彩/梯度二值化(color/gradient threshold)、视角转换 Perspective transform 、行道线检测(Detect lane lines)、 道路弯度测量(Determine the lane curvature) Ca...
...数据集的复杂结构。深层卷积网络(deep convolutional nets)为图像、视频和音频等数据处理上带来突破性进展,而递归网络(recurrent nets )也给序列数据(诸如文本、语言)的处理带来曙光。机器学习为现代生活诸多方面带来巨大动...
...示了与简单和复杂面部伪装(FG)数据集不同伪装的样本图像。从图像中可以看出,复杂背景数据集中的样本与简单数据集相反,具有相对复杂的背景。 本文介绍了面部关键点检测框架,用于伪装人脸识别。框架首先使用深度...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...