图像识别例子SEARCH AGGREGATION

首页/精选主题/

图像识别例子

号码认证

...信息安全的前提下,自动通过运营商网关层完成本机号码识别及校验功能;升级传统短信验证码方式,实现应用的一键登录、注册及校验,提高应用注册转化率及留存率。

图像识别例子问答精选

如何用python监视mysql数据库的更新?

回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...

jonh_felix | 1175人阅读

为什么那些攻防教学例子基本都是php网站或者asp之类的?

问题描述:为什么那些攻防教学例子基本都是php网站或者asp之类的,很少见java?

nicercode | 933人阅读

什么是人脸识别?

回答:最早听到人脸识别概念还是从科幻电影中,通过一个人的面部特征,机器可以知道你是谁。随着技术的进步,人脸识别已经走入了人们的生活,iPhone手机上的Face ID就是其中的代表产品,第一次让这项技术与消费者有了近距离的接触。Face ID于2017年在iPhone X上推出,该技术取代了苹果的Touch ID指纹扫描系统。Face ID使用True Depth摄像头系统,该系统由传感器、摄像头和位于...

Binguner | 1512人阅读

什么拨号器可以云识别

问题描述:关于什么拨号器可以云识别这个问题,大家能帮我解决一下吗?

付永刚 | 782人阅读

如何识别虚拟主机服务器

问题描述:关于如何识别虚拟主机服务器这个问题,大家能帮我解决一下吗?

ernest | 986人阅读

人脸识别系统是如何找到人的?

回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...

BicycleWarrior | 4440人阅读

图像识别例子精品文章

  • LeCun 谈深度学习技术局限及发展

    ...局损失函数过程包括特征提取,识别器,环境后处理器(图像模型)问题:通过图像模型进行梯度后向传播。浅层结构化预测方法:有NLL损失的条件随机域,有Hinge Loss的较大边缘马尔可夫网络和隐支持向量机(Latent SVM),有感...

    LuDongWei 评论0 收藏0
  • Programming Computer Vision with Python (学习笔记三)

    ...要的基础知识点,在机器机视觉、人脸识别以及一些高级图像处理技术时都被经常用到,所以本人自行对PCA进行了更深入的学习。 PCA是什么 PCA(Principal Component Analysis,主成分分析或主元分析)是一种算法,PCA的结果是用尽可能...

    wpw 评论0 收藏0
  • 机器视觉、模式识别库汇总

    ...机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV 拥有包括 300 多个C函数的跨平台的中、高层 API。它不依赖于其它的外部库——尽管也可以使用某些外部库。OpenCV 对非商...

    habren 评论0 收藏0
  • 一文读懂 CNN、DNN、RNN 内部网络结构区别

    ...在语音识别中4层网络就能够被认为是较深的,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。单从结构上来说,全连接的DNN和图1的多层感知机是...

    cheng10 评论0 收藏0
  • 探秘深度神经网络的训练与推理:以“认猫”为例

    ...,以精简的应用程序,进行数字世界中的工作:比如确认图像、语音识别、检测血液病,甚至化身为导购,建议你接下来该买哪双鞋子——凡是你想的出来的事物,人工智能似乎都能胜任。经过训练之后的神经网络,能够根据新...

    callmewhy 评论0 收藏0
  • 机器学习研究人员需要了解的8个神经网络架构(上)

    ...的外形。 观点:观点的改变导致标准学习方法无法处理的图像变化。输入维度(即像素)之间的信息跳跃。 设想一个医学数据库,其中患者的年龄有时希望达到通常编码体重的输入维度! 为了应用机器学习,我们首先要消除这种维...

    DevTalking 评论0 收藏0

推荐文章

相关产品

<