回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
摘要商品检索是一门综合了物体检测、 图像分类以及特征学习的技术。 近期, 很多研究者成功地将深度学习方法应用到这个领域。 本文对这些方法进行了总结, 然后概括地提出了商品特征学习框架以及垂类数据挖掘方式, ...
...经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功识别人脸,物体和交通标志。图1如图1所示,卷积神经...
...接触过深度学习的小白,强烈推荐了解,非小白可跳过 图像分类 首先来了解在计算机视觉领域上的图像指的是什么。——图像由像素组成,每个像素通过三原色(RGB)的明暗组合形成一种颜色,RGB各有256级亮度用数字0~255表示...
...接触过深度学习的小白,强烈推荐了解,非小白可跳过 图像分类 首先来了解在计算机视觉领域上的图像指的是什么。——图像由像素组成,每个像素通过三原色(RGB)的明暗组合形成一种颜色,RGB各有256级亮度用数字0~255表示...
...在看,我们要把关联的关系、动态的关系都挖掘出来。 图像识别与NLP,使用Deep Learning解析图像中的结构化信息,并生成描述性语言我们看看这幅图上能做什么,我们可以让深度神经网络先尝试理解这幅画的结构,然后再用语言...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...