回答:大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。提到大数据,最常见的应用就是大数据分析,大数据分析的数据来源不仅是局限于企业内部的信息化系统,还包括各种外部系统、机器设备、传感器、数据库的数据,如:政府、银行、国计民生、行业产业、社交网站等数据,通过大数...
回答:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 当进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,而我们只需投入很少的管理工作,或与服务供应商进行很少的交互就可以。云计算主要应用的领域有公有云、私有云、云存储、桌面云、物联网、人工智能、大数据、智能制造、智慧城市等。各行各业也都需要云计算,像政府、金融、电力、教育、交通...
回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
... 人脸识别是近年来模式识别、图像处理、机器视觉、神经网络以及认知科学等领域研究的热点课题之一,被广泛应用于公共安全(罪犯识别等)、安全验证系统、信用卡验证、医学、档案管理、视频会...
...在语音识别中4层网络就能够被认为是较深的,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。单从结构上来说,全连接的DNN和图1的多层感知机是...
...统的内容技术已难以满足企业日益增长的安全需求,就拿图像来说,传统的色情识别技术为例,就经常会存在误判、错判、漏判等情况。 而基于深度学习模型的图像分类,则可以实现更高的准确率,以及图像、内容文本实时处...
...经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功识别人脸,物体和交通标志。图1如图1所示,卷积神经...
...proved Dense Trajectories) ,在这里就不加讨论了。深度学习对图像内容的表达能力十分不错,在视频的内容表达上也有相应的方法。下面介绍最近几年主流的几种技术方法。 1、基于单帧的识别方法 一种最直接的方法就是将视频进行...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...