回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...处理到多维数组数据的,比如一个有3个包含了像素值2-D图像组合成的一个具有3个颜色通道的彩色图像。很多数据形态都是这种多维数组的:1D用来表示信号和序列包括语言,2D用来表示图像或者声音,3D用来表示视频或者有声音...
...大利亚埃迪斯科文大学的研究人员综述了深度学习在医学图像分析领域应用的概念、最近出现的常用方法、数据集、面临挑战和可能的未来方向其参考了近几年三百多篇文献,值得医学影像处理领域的学者与工程技术人员参考。...
...,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和演讲方面表现出了闪亮的一面。机器学习技术在现代社会的各个方面表现出了强大的功...
...当的权重。[10] 提出增强的 TrAdaBoost 来处理区域砂岩显微图像分类的问题。[26] 提出了一个量度迁移学习框架,用于在并行框架中学习实例权重和两个不同域的距离,以使跨域的知识迁移更有效。[11] 将集成迁移学习引入可以利用...
...2 监督学习 II Python 数据分析与挖掘实战 第9章 基于水色图像的水质评价 数据科学和人工智能技术笔记 十五、支持向量机 Sklearn 学习指南 第二章:监督学习 K 近邻 AILearning 第2章_K近邻算法 Scikit-learn 秘籍 第三章 使用距离向量...
...,非常适合用来处理数字病理学(digital pathology, DP)中的图像分析问题。DP中有各种图像分析任务,包括检测和计数(例如有丝分裂)、分割(例如细胞核)、组织分类(例如癌/非癌)等等。但是由于产生数字病理学图像的过程...
...uper-resolution:A Survey》,详细回顾了近年来基于深度学习的图像超分辨率(Super-resolution,SR)的方方面面,对于想要进入该领域、在该领域进一步研究、涉足该领域研发的朋友,堪称必读论文。该文作者分别来自华南理工大学和新...
...或者分离开有重叠区域的细胞核还是比较困难。生成训练图像块也要注意,一般用标识好的图像生成二值掩码,然后从正/负区域随机剪切产生正/负样本,但是负样本中可能包含未标记的正样本区域。Patch selection technique图像块选...
...。卷积神经网络(CNN)或称为 ConvNet 广泛应用于许多视觉图像和语音识别等任务。在 2012 ImageNet 挑战赛 krizhevsky 等人首次应用深度卷积网络后,深度卷积神经网络的架构设计已经吸引了许多研究者做出贡献。这也对深度学习架构...
...许多人工智能应用的基础 [1]。由于 DNN 在语音识别 [2] 和图像识别 [3] 上的突破性应用,使用 DNN 的应用量有了爆炸性的增长。这些 DNN 被部署到了从自动驾驶汽车 [4]、癌症检测 [5] 到复杂游戏 [6] 等各种应用中。在这许多领域中...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...