回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...单结构图如下:处理过程分为三步:网络摄像头实时拍摄图像学习模型检测和识别所拍摄图像的人脸如果识别结果是老板则切换屏幕所需要的技术实现只有三项:拍摄人脸图像识别人脸图像切换屏幕一步步完成之后整合就可以了...
...经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功识别人脸,物体和交通标志。图1如图1所示,卷积神经...
摘要商品检索是一门综合了物体检测、 图像分类以及特征学习的技术。 近期, 很多研究者成功地将深度学习方法应用到这个领域。 本文对这些方法进行了总结, 然后概括地提出了商品特征学习框架以及垂类数据挖掘方式, ...
...注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。本文以机器翻译为例,深入浅出地介绍了深度学习中注...
...计算机视觉领域,我们将其应用于文字识别、目标检测、图像分类、图像质量排序等。下面我们就以语义匹配、图像质量排序及文字识别这三个应用场景为例,来详细介绍美团点评在深度学习技术及应用方面的经验和方法论。基...
...。多年以来,开发人员在Github上发布了一系列的可以支持图像、手写字、视频、语音识别、自然语言处理、物体检测的机器学习框架,但并没有一种框架可以完美地解决你所有的需求。那么该如何选择最适合你的开源框架呢?希...
...于python语言,通信专业的孩子都懂的,经常用来绘制数学图像。tensorflow是一套机器学习框架,你可以详细的设计和定制你的学习模型和流程,当然你需要大量的专业知识和技能才能做到。keras是最适合我这种入门小白学习的,但...
...示了与简单和复杂面部伪装(FG)数据集不同伪装的样本图像。从图像中可以看出,复杂背景数据集中的样本与简单数据集相反,具有相对复杂的背景。 本文介绍了面部关键点检测框架,用于伪装人脸识别。框架首先使用深度...
...口罩数据不足的问题,一种可行的方案是在已有的无口罩图像上绘制口罩。然而,目前大部分的绘制方案属于位置贴图式,这种方案生成的戴口罩图像不够真实且缺乏灵活性。因此,我们借鉴PRNet[2,3]的思路,采用一种图像融合...
...内可以取得不错的训练效果。 _本方法的特点: 纯游戏图像作为输入 不使用游戏内部接口 可靠的强化学习方法 简单易行的并行训练 1. PPO简介 PPO(Proximal Policy Optimization)是OpenAI在2016年NIPS上提出的一个基于Actor-Critic框架的强...
...了双路径 GAN(TP-GAN),通过单一侧面照片合成正面人脸图像,取得了当前较好的结果。研究人员提出了一个像人类一样能够考虑整体和局部信息的 GAN 结构,合成的图像非常逼真且很好地保留了身份特征,并且可以处理大量不同...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...