回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...些像字更像图的墨迹。小雪做的,是一种介于手写录入和图像标记之间的工作。同服务于智能驾驶的街景标记、服务于智能医疗的人体标记、服务于语音交互的声音标记一样,他们共同的行业学名叫做「人工智能数据标注」——...
...单结构图如下:处理过程分为三步:网络摄像头实时拍摄图像学习模型检测和识别所拍摄图像的人脸如果识别结果是老板则切换屏幕所需要的技术实现只有三项:拍摄人脸图像识别人脸图像切换屏幕一步步完成之后整合就可以了...
...别竞赛(Dogs vs. Cats)。比赛的目标是训练一种能够检测图像中是否包含猫或者狗的算法。当时,正如比赛官网宣布的,在使用13000张猫和狗的图像进行训练后,较先进的算法分辨猫狗的准确率是82.7%。我的结果我应用了迁移学习...
...利用生成数据来辅助训练的方法。通过生成高质量的行人图像,将其与行人重识别模型融合,同时提升行人生成的质量和行人重识别的精度。 论文链接:https://arxiv.org/abs/1904.07223 B 站视频: https://www.bilibili.com/vide...腾讯视频: ht...
...了双路径 GAN(TP-GAN),通过单一侧面照片合成正面人脸图像,取得了当前较好的结果。研究人员提出了一个像人类一样能够考虑整体和局部信息的 GAN 结构,合成的图像非常逼真且很好地保留了身份特征,并且可以处理大量不同...
...新唤起人们的极大关注,研究人员们亦不负众望,在诸如图像识别等领域取得不斐的成就。就在五年前,如果您交给计算机一幅阿猫或阿狗的图像,让它识别,通常它会很作难——水平有限,猫狗难辨。但时过境迁,由于卷积神...
在图像识别的道路越走越远✌( •̀ ω •́ )y 1.解释一下 深夜脑子不是很清楚,大部分代码参考了github……此CNN图像识别神经网络的用途是之后用来评估NVIDIA-DGX服务器的性能,因此尽量扩大网络的训练时间。此服务器搭载了8...
...经网络(也称作 ConvNets 或 CNN)是神经网络的一种,它在图像识别和分类等领域已被证明非常有效。 卷积神经网络除了为机器人和自动驾驶汽车的视觉助力之外,还可以成功识别人脸,物体和交通标志。图1如图1所示,卷积神经...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...