回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...计算机视觉领域,我们将其应用于文字识别、目标检测、图像分类、图像质量排序等。下面我们就以语义匹配、图像质量排序及文字识别这三个应用场景为例,来详细介绍美团点评在深度学习技术及应用方面的经验和方法论。基...
...从地球连到月 亮,再从月亮返回地球),在语音识别和图像识别等领域获得了巨大的成功。 项目负责人之一Andrew称:我们没有像通常做的那样自己框定边界,而是直接把海量数据投放到算法中,让数据自己说话,...
...proved Dense Trajectories) ,在这里就不加讨论了。深度学习对图像内容的表达能力十分不错,在视频的内容表达上也有相应的方法。下面介绍最近几年主流的几种技术方法。 1、基于单帧的识别方法 一种最直接的方法就是将视频进行...
...数据集的复杂结构。深层卷积网络(deep convolutional nets)为图像、视频和音频等数据处理上带来突破性进展,而递归网络(recurrent nets )也给序列数据(诸如文本、语言)的处理带来曙光。机器学习为现代生活诸多方面带来巨大动...
...口罩数据不足的问题,一种可行的方案是在已有的无口罩图像上绘制口罩。然而,目前大部分的绘制方案属于位置贴图式,这种方案生成的戴口罩图像不够真实且缺乏灵活性。因此,我们借鉴PRNet[2,3]的思路,采用一种图像融合...
...)从而更好地把来自输入数据的信号——比如,一张狗的图像像素点——发送到与高级概念(比如狗)相关联的神经元。当深度神经网络学习数以千计的狗的样本图像之后,它可像人一样较精确地从新图像中辨识出狗。这一魔术...
...性路由代替了较大池化。与CNN类似,更高层的网络观察了图像中更大的范围,不过由于不再是较大池化,所以位置信息一直都得到了保留。对于较低的层,空间位置的判断也只需要看是哪些胶囊被激活了。这个网络中最底层的多...
...在输入张量上重复使用,也就是说特征检测器可以在输入图像上重复检测是否有该局部特征。这是卷积网络十分优秀的属性,它大大减少了两层间参数的数量。基于这些基础的卷积特性,我们可以构建不同的卷积模型处理不同的...
...录了多篇具有代表性的 CVPR 2018 论文。比如,拍立淘利用图像搜索和识别技术,帮助用户在移动端通过拍照就能找到相似商品;线下新零售领域,阿里用空间定位、货架商品SKU识别技术推动人货场数字化,并做进一步的商业...
...出的论文中,其采用了大规模数据集与深度神经网络学习图像的自然结构,从而进一步分离图像的前景与背景。论文地址:https://arxiv.org/abs/1703.03872摘要抠图(Image matting)是一项基本的计算机视觉问题,并拥有广阔的应用空间。...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...