回答:我是泰瑞聊科技,很荣幸来回答此问题,希望我的回答能对你所有帮助!人脸识别的原理人脸识别的工作原理,我们可以拆解为以下10个步骤,更容易理解一些。1、人脸检测,检测出图像中人脸所在的位置;2、人脸配准,定位出人脸五官的关键点坐标,并进行标注;3、人脸属性识别,识别出人脸的性别、年龄、姿态、表情等属性;4、人脸提特征,将一张人脸图像转化为一串固定长度数值的过程;5、人脸比对,衡量两个人脸之间的相似度;...
...识别(Optical Character Recognition, OCR),是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。简而言之,检测图像中的文本资料,并且识别出文本的内容。 那么有哪些应用场景呢? 其实我们日常生活中处...
...框架相比具有天然的优势。其次,在模型结构上,借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多的卷积池化层对,从而可以看到非常长的历史和未来信息。这两点保...
... 人脸识别是近年来模式识别、图像处理、机器视觉、神经网络以及认知科学等领域研究的热点课题之一,被广泛应用于公共安全(罪犯识别等)、安全验证系统、信用卡验证、医学、档案管理、视频会...
...性路由代替了较大池化。与CNN类似,更高层的网络观察了图像中更大的范围,不过由于不再是较大池化,所以位置信息一直都得到了保留。对于较低的层,空间位置的判断也只需要看是哪些胶囊被激活了。这个网络中最底层的多...
...人体关键点检测技术,依靠这项技术,抖音能够检测到图像中所包含人体的各个关键点的位置,从而实现从用户姿态到目标姿态的准确匹配。 以上这些体感游戏,都牵涉到计算机视觉中的一个细分领域: 人体姿态估计(pose es...
...因此加入了Complexity的度量。另外,根据当前神经网络在图像/语音/文本三方面的应用情况,对这些算子的使用频率进行了估计。由于应用领域和硬件平台各不相同,因此复杂度和使用频率仅作参考。1. 深度神经网络计算1.1. 计算...
...一方面,在各国AI技术蓬勃发展的今天,中国语音识别和图像识别的应用已达到国际领先水平。在图像/语音识别的基础之上,深度学习即模拟神经网络的输入和输出,通过大规模数据进行训练,从而对样本进行精准分类和预测,...
...识别。近年来,深度摄像技术的发展使得人体运动的深度图像序列变得容易获取,结合高精度的骨架估计算法,能够进一步提取人体骨架运动序列。利用这些运动序列信息,行为识别性能得到了很大提升,对智能视频监控、智能...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...