回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...据项目在Github的Star数量来评级,数据采集于2017年5月初。TensorFlowTensorFlow框架的前身是Google的DistBelief V2,是谷歌大脑项目的深度网络工具库,一些人认为TensorFlow是借鉴Theano重构的。Tensorflow一经开源,马上引起了大量开发者的跟...
...这个。在keras框架中,这三个环节也就是几行代码的事。 tensorflow、keras、Matlab和神经网络CNN都是什么 这个是我初学的时候最困扰我的问题之一。Matlab是一种开发工具,类似于python语言,通信专业的孩子都懂的,经常用来绘制数...
...的GPU计算资源用以实验,以及非常方便的开源工具(比如TensorFlow)可以让研究人员快速地进行探索和尝试。在以前,研究人员如果没有像Alex那样高超的编程实力能自己实现cuda-convnet,可能都没办法设计CNN或者快速地进行实验。...
摘要: 本文对TensorFlow Hub库的介绍,并举例说明其用法。 在软件开发中,最常见的失误就是容易忽视共享代码库,而库则能够使软件开发具有更高的效率。从某种意义上来说,它改变了编程的过程。我们常常使用库构建块或...
...。目前研究人员正在使用的深度学习框架不尽相同,有 TensorFlow、Torch 、Caffe、Theano、Deeplearning4j等,这些深度学习框架被应用于 计算机视觉 、 语音识别、 自然语言处理 与 生物信息学 等领域,并获取了极好的效果。下面让我...
opencv+mtcnn+facenet+python+tensorflow 实现实时人脸识别 Abstract:本文记录了在学习深度学习过程中,使用opencv+mtcnn+facenet+python+tensorflow,开发环境为ubuntu18.04,实现局域网连接手机摄像头,对目标人员进行实时人脸识别,效果并非特别...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...