回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...件的迭代,智能家居产品逐步走进千家万户,语音识别、图像识别等AI相关技术也经历了阶梯式发展。如何看待人工智能的本质?人工智能的飞速发展又经历了哪些历程?本文就从技术角度为大家介绍人工智能领域经常提到的几...
...件的迭代,智能家居产品逐步走进千家万户,语音识别、图像识别等AI相关技术也经历了阶梯式发展。如何看待人工智能的本质?人工智能的飞速发展又经历了哪些历程?本文就从技术角度为大家介绍人工智能领域经常提到的几...
...HOG)作为特征向量。在计算HOG之前,使用其二阶矩来校正图像: def deskew(img): m = cv2.moments(img) if abs(m[mu02]) < 1e-2: return img.copy() skew = m[mu11]/m[mu02] M = np.float32([[1, skew, -0.5*SZ*ske...
... Ilya Sutskever 成为了 ImageNet 2012 冠军之后,CNN 已经变成了图像分割的标配。实际上,从那时起,CNN 已经在 ImageNet 挑战上面战胜了人类。 虽然这些分类结果令人印象深刻,但是比真实的人类视觉理解还是要简单很多。 在分类中...
...),并且通过实现和改进真的可以有一个较好的提升。在图像表示中,为了编码类的相关性和类的具体信息,文章提出了一个深度判别和可共享的特征学习一个新局部特征的学习方法。该方法旨在分层学习特征变换滤波器组,将...
...简单!在本文中,我们将看到卷积神经网络(CNN)如何在图像实例分割任务中提升其结果。自从 Alex Krizhevsky、Geoff Hinton 和 Ilya Sutskever 在 2012 年赢得了 ImageNet 的冠军,卷积神经网络就成为了分割图像的黄金准则。事实上,从那...
...传播,(随机)梯度下降 现在有一个模型,能对输入的图像各种可能的类别进行评分。我们会引入损失函数Loss Function(或叫代价函数 Cost Function)定量的衡量该模型(也就是权重W)的好坏,其原理是——输出结果与真实结果之间...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...