算法gpu服务器SEARCH AGGREGATION

首页/精选主题/

算法gpu服务器

算法gpu服务器问答精选

目前哪里可以租用到GPU服务器?

回答:这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。但是,回答量好少。而且最好的回答,竟然是讲amazon aws的,这对国内用户,有多大意义呢?我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!说到GPU租用的选择。ucloud、ucloud、ucloud、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还...

Nino | 2247人阅读

有什么好用的深度学习gpu云服务器平台?

回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...

enda | 1151人阅读

互联网公司最常见的面试算法题有哪些?

回答:大家好,我们以java排序算法为例,来看看面试中常见的算法第一、基数排序算法该算法将数值按照个位数拆分进行位数比较,具体代码如下:第二、桶排序算法该算法将数值序列分成最大值+1个桶子,然后递归将数值塞进对应值的桶里,具体代码如下:第三、计数排序算法该算法计算数值序列中每个数值出现的次数,然后存放到单独的数组中计数累加,具体代码如下:第四、堆排序算法该算法将数值序列中最大值挑选出来,然后通过递归将剩...

molyzzx | 1263人阅读

Net Core已经开源好几年了, 为什么不像JVM那样很多人研究和调优其GC算法?

回答:我们已经上线了好几个.net core的项目,基本上都是docker+.net core 2/3。说实话,.net core的GC非常的优秀,基本上不需要像做Java时候,还要做很多的优化。因此没有多少人研究很正常。换句话,如果一个GC还要做很多优化,这肯定不是好的一个GC。当然平时编程的时候,常用的非托管的对象处理等等还是要必须掌握的。

ZweiZhao | 879人阅读

未来想从事Linux后台开发,需要学习linux内核吗?像读内核源码。还是学好linux网络编程,C,算法。学习内核的意义有哪些呢?

回答:后台不等于内核开发,但了解内核肯定有助于后台开发,内核集精ucloud大成,理解内核精髓,你就离大咖不远了。程序逻辑抽取器支持c/c++/esqlc,数据库支持oracle/informix/mysql,让你轻松了解程序干了什么。本站正在举办注解内核赢工具活动,你对linux kernel的理解可以传递给她人。

wenshi11019 | 663人阅读

为什么感觉学了vue之后编程能力下降了?

回答:这几天我也是因为一个项目而被迫使用vue,坦白的说vue和传统的网站开发思路不同,导致爱的人爱死,老程序员烦死的现状。主要区别:1传统方式:我们做一个网站,首先创建几个文件夹(css、js等等),页面需要用的资源文件,都放到各自的文件夹里。然后创建若干个HTML网页,一个个链接把这些若干网页串起来就OK,网页里需要有什么事件或效果,要么用原生js要么用jqurey,去操作某个dom,实现页面变化。...

sarva | 1311人阅读

算法gpu服务器精品文章

  • 步入计算多元化时代 异构计算为什么发展空间巨大?

    ...强,但由于是多进程并发,更适合整块数据进行流处理的算法;FPGA能管理能运算,但是开发周期长,复杂算法开发难度大。适合流处理算法,不管是整块数据进还是一个一个进。还有实时性来说,FPGA是最高的。当人工智能等海...

    gghyoo 评论0 收藏0
  • 滴滴机器学习平台架构演进

    ...都属于计算密集型应用,一般都会使用单价较昂贵的 GPU 服务器。但随着业务的开展,各算法团队仅针对各自的问题做规划,导致了一种小作坊式的生产局面。 作坊式生产方式在早期有其积极的一面,能够保证创新的灵活性,但...

    entner 评论0 收藏0
  • 如何为你的深度学习任务挑选最合适的 GPU?

    ...士卢加诺大学信息学硕士,热衷于开发自己的 GPU 集群和算法来加速深度学习。这篇博文最早版本发布于 2014 年 8 月,之后随着相关技术的发展和硬件的更新,Dettmers 也在不断对本文进行修正。2016 年 7 月 18 日,机器之心曾经推...

    taohonghui 评论0 收藏0
  • 基准评测TensorFlow、Caffe等在三类流行深度神经网络上的表现

    ...的硬件平台包括两种CPU(台式机级别的英特尔i7-3820 CPU,服务器级别的英特尔Xeon E5-2630 CPU)和三种Nvidia GPU (GTX 980、GTX 1080、Telsa K80,分别是Maxwell、Pascal和Kepler 架构)。作者也用两个Telsa K80卡(总共4个GK210 GPU)来评估多GPU卡并行...

    canopus4u 评论0 收藏0
  • 24分钟完成ImageNet训练,刷新世界纪录

    ...步意义重大,交互式研究能大大提高研发效率。利用参数服务器实现的异构方法无法保证在大型系统之上稳定起效。而正如 Goyal 等人于 2017 年得出的结论,数据并行同步方法对于超大规模深度神经网络(简称 DNN)训练而言表现...

    Soarkey 评论0 收藏0
  • 使用腾讯云“自定义监控”监控GPU使用率

    ...的使用场景是越来越广,在很多场景下我们也需要获取GPU服务器的性能参数来优化程序的执行。目前腾讯云提供的GPU云服务器并未提供GPU方面的监控数据,本文旨在通过使用腾讯云的自定义监控服务来自行实现对GPU服务器的...

    Pikachu 评论0 收藏0
  • 让AI简单且强大:深度学习引擎OneFlow技术实践

    ...界上最快的主题模型训练算法和系统LightLDA,只用数十台服务器即可完成以前数千台服务器才能实现的大规模主题模型,该技术成功应用于微软在线广告系统,被当时主管研究的全球副总裁周以真称为年度最好成果。2015年至...

    chenjiang3 评论0 收藏0
  • 首次披露!阿里线下智能方案进化史

    ...对不同硬件平台,研发了高效推理计算库;同时我们也和服务器研发团队一起抽象出了一套软硬件产品化方案,以服务多样的业务形式,并在真实业务场景中实验落地。 在后面的篇幅中,我们主要会从算法探索、训练工具、推...

    keelii 评论0 收藏0
  • 福布斯:机器学习和深度学习将革老牌云服务提供商的命

    ...深度学习带来的那种颠覆早已从软件堆栈扩大到了芯片、服务器和云服务提供商。这种颠覆根源于这个简单的事实:就机器学习和深度学习而言,GPU是效率比传统CPU高得多的处理器。就在不久前,解决办法还是为传统服务器添加...

    muzhuyu 评论0 收藏0
  • 实现 TensorFlow 多机并行线性加速

    ...模型的训练速度,相比CPU能提供更快的处理速度、更少的服务器投入和更低的功耗。这也意味着,GPU集群上训练深度学习模型,迭代时间更短,参数同步更频繁。[9]中对比了主流深度学习系统在CPU和GPU上的训练性能,可以看出GPU...

    时飞 评论0 收藏0

推荐文章

相关产品

<