回答:这些都是工具,6K估计是给你开的你所会的这些工具的价格,至于你值多少钱或者将来你在这个岗位上能值多少钱,这首先要看是否人岗匹配,岗位的设定和你会的东西是不是绝大部分吻合的。如果匹配那么就要看你用这些工具能产生多少有价值的增量信息,这个才是关键。首先,要知道业务数据分析的核心价值是什么?业务分析要熟悉行业特点,了解公司业务及流程,有针对性的抓住运营管理的痛点和关键点,才能有自己独到的见解和分析视角,...
回答:首先明确下定义:计算时间是指计算机实际执行的时间,不是人等待的时间,因为等待时间依赖于有多少资源可以调度。首先我们不考虑资源问题,讨论时间的预估。执行时间依赖于执行引擎是 Spark 还是 MapReduce。Spark 任务Spark 任务的总执行时间可以看 Spark UI,以下图为例Spark 任务是分多个 Physical Stage 执行的,每个stage下有很多个task,task 的...
回答:对于编程,没有最好的语言,只有最合适的语言。下面谈谈常见的PC桌面端开发语言。C/C++系列C++系列最大的优点就是效率高,不过缺点也是很麻烦的,上手难度大。下面介绍介绍两种有官方背书的,开发过程中经常用到的C++界面库,至于Duilib、BCG等第三方开源库这里不再介绍。1、QtC++开发界面首选开源库。在C++领域,有GUI的地方都有Qt,有嵌入式的地方一般也有它,金融、工业、电力、视频监控等...
回答:数据分析的应用几乎是无行业和人群限制的。数据分析的魅力体现在数据的价值和创新的能力,运用数据的能力越来越成为基础的职业技能,因此任何有兴趣和需求的人士都可以进入这个领域。涉及到数据分析学习和工具的选择, 那么久可以从知识和应用的角度入门数据分析的路径。01SQL数据库语言作为数据分析师,我们首先要知道如何获取数据,其中最常用的就是从关系型数据库中取数。因此,你可以不会R,但不能不会SQL。大数据...
回答:数据分析工具其实有很多种,对应不同类型的使用者也有各自适合的选择。例如懂数据算法计算机语言的人,可能给他一款,填写算法代码流畅的分析软件就是有效。掌握了数据分析专业技能的人,强大的分析功能能将工作做到事半功倍,不管看着功能多复杂。还有就是我这种非计算机专业出身,非统计学出身,但工作做还需要对大量数据进行分析的人。如果你跟我一样,那么可以看下我的回答。我总结了下,我以前找分析工具的时候,自己先想了几...
...014年加入百度,先后带团队建设为百度地图6大Place场景做数据分析,后专注于百度外卖大数据生态从0开始孵化并最终完善。自主研发涉及到数据采集3大平台、开放式ETL4件套、OLAP分析平台、Adhoc、大数据分布式调度、数据集市、...
简介:试着,做了一个拉勾网数据分析师职位的数据分析。其实,虽然很想做数据分析师,但是是跨行,心里相当忐忑,做这个分析就相当于加深自己对数据分析这个行业的了解了。 思路 大致思路 起始 数据来源 ...
...一个格局,很多时候做OLTP,要用行式数据库,做大量的数据分析时要用列式数据库,因为它可以带来十倍、百倍的速度提高。那么对大数据实时的处理,我们要用做数据流的分析数据库、内存数据库;在手机上或者说一些移动...
.../sps.163.com/func/?func=downloadapp&modelid=+modelid+&spst=+spst+&spsf&spss= + channel,, sps ) if (config) { android_url = config.android } if (config && config...
.../sps.163.com/func/?func=downloadapp&modelid=+modelid+&spst=+spst+&spsf&spss= + channel,, sps ) if (config) { android_url = config.android } if (config && config...
...还具有易于学习、编辑周期短、具有各种框架等优点,在数据分析、机器学习、Web 开发、测试等多个领域都有出色发挥,尤其近年来数据挖掘和 AI 等领域蓬勃发展,更是极大带动提高了 Python 的市场占比。 Paul Jansen 对本月 Python...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...