回答:Spark Shark |即Hive onSparka.在实现上是把HQL翻译成Spark上的RDD操作,然后通过Hive的metadata获取数据库里的表信息,Shark获取HDFS上的数据和文件夹放到Spark上运算.b.它的最大特性就是快以及与Hive完全兼容c.Shark使用了Hive的API来实现queryparsing和logic plan generation,最后的Physical...
回答:MySQL是单机性能很好,基本都是内存操作,而且没有任何中间步骤。所以数据量在几千万级别一般都是直接MySQL了。hadoop是大型分布式系统,最经典的就是MapReduce的思想,特别适合处理TB以上的数据。每次处理其实内部都是分了很多步骤的,可以调度大量机器,还会对中间结果再进行汇总计算等。所以数据量小的时候就特别繁琐。但是数据量一旦起来了,优势也就来了。
回答:Hadoop生态Apache™Hadoop®项目开发了用于可靠,可扩展的分布式计算的开源软件。Apache Hadoop软件库是一个框架,该框架允许使用简单的编程模型跨计算机集群对大型数据集进行分布式处理。 它旨在从单个服务器扩展到数千台机器,每台机器都提供本地计算和存储。 库本身不是设计用来依靠硬件来提供高可用性,而是设计为在应用程序层检测和处理故障,因此可以在计算机集群的顶部提供高可用性服务,...
回答:1998年9月4日,Google公司在美国硅谷成立。正如大家所知,它是一家做搜索引擎起家的公司。无独有偶,一位名叫Doug Cutting的美国工程师,也迷上了搜索引擎。他做了一个用于文本搜索的函数库(姑且理解为软件的功能组件),命名为Lucene。左为Doug Cutting,右为Lucene的LOGOLucene是用JAVA写成的,目标是为各种中小型应用软件加入全文检索功能。因为好用而且开源(...
...UI 上来看看,当我们运行这段代码的时候,后台都发生了什么。可以看到,执行这段代码的时候,spark 通过分析,优化代码,知道这段代码需要一个 job 来完成,所以 web ui 上只有一个 job。值得深究的是,这个 job 由两个 stage 完...
...、SQL中的数据集 如果你熟悉SQL,可以用SQL的思维考虑下什么是集合操作: UPDATE USER SET GENDER=FEMALE 上面的SQL语句就是一个集合操作,对一个数据集合,执行一条UPDATE操作,整个数据集都被修改了。 UPDATE语句有两个特点,这也是...
Spark Spark 背景 什么是 Spark 官网:http://spark.apache.org Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。目前,Spark...
...调用过程。你兴许会有这样的疑问--去看这些源代码有什么用呢?好像就算知道这些,实际使用时不还是用一下API就好了吗?。实际上,看源代码首先的就是满足一下好奇心,对Spark有一个更充分的了解;其次关于具体用途...
...列仅仅是为了梳理个人学习spark的笔记记录,并非为了做什么教程,所以一切以个人理解梳理为主,没有必要的细节就不会记录了。若想深入了解,最好阅读参考文章和官方文档。 其次,本系列是基于目前最新的 spark 1.6.0 系列...
...L语法。其中,我们定义了4种表: 流表:定义了输入源是什么?具体的解码方式是什么?系统支持Json的解码方式,也支持用户自定义解码函数。 维度表:主要是静态表,支持MySQL,主要是用于流表Join的。 临时表:和Hive的临时...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...