在统计学中,最大似然估计,也称最大概似估计,是用来估计一个概率模型的参数的一种方法 通俗来讲,最大似然估计是利用已知的样本的结果,在使用某个模型的基础上,反推最有可能导致这样结果的模型参数值。 定义 ...
...物理原理的。 大部分的现代神经网络算法都是利用较大似然法(Maximum Likelyhood)训练的,IanGoodfellow 与Yoshua Bengio更是在他们著的《深度学习》一书中详述了利用香农的信息熵构建深度学习损失函数的通用形式:这些神经网络...
...连续的,即定量的类型,才可以使用回归来预测。 极大似然估计(Maximum likelyhood): 在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little...
...这些数据的分布P{X}服从g(x;θ),在观测数据上通过较大化似然函数得到θ的值,即较大似然法:GAN的工作原理是这样的文章开头描述的场景中有两个参与者,一个是摄影师(男生),一个是摄影师的女朋友(女生)。男生一直试...
... 目录 0.前言 1.理论基础 2.Cauchy分布的极大似然估计 2.1理论基础 2.2算法 2.2.1R语言实现 2.2.2Python语言实现 3.Gamma 分布的极大似然估计 3.1理论基础 3.2算法 3.2.1R语言实现 3.2.2Python语言实现 0.前言 最近在学习Th...
...神经网络中,对于给定的一组参数θ,我们可以使用最大似然估计来优化参数。参数θ将输入的样本转化成输入到Logistic函数中的参数z,即z = θ * x。最大似然估计可以写成: 因为对于给定的参数θ,去产生t和z,根据联合概率我...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...