数据机器学习学习SEARCH AGGREGATION

首页/精选主题/

数据机器学习学习

Greenplum

数据仓库(UDW Greenplum)是大规模并行处理数据仓库产品,基于开源的Greenplum开发的大规模并发、完全托管的PB级数据仓库服务。UDW可以通过SQL让数据分析更简单、高效,为互联网、物联网、金融、电信等行业提供丰富的业务分析...

数据机器学习学习问答精选

机器学习必备数据分析库pandas,如何使用pandas完成文件读取?

回答:pandas是python一个非常著名的数据处理库,内置了大量函数和类型,可以快速读取日常各种文件,包括txt,csv,excel,json,mysql等,为机器学习模型提供样本输入(包括数据预处理等),下面我简单介绍一下这个库的使用,以读取这5种类型文件为例:txt这里直接使用read_csv函数读取就行(早期版本中可以使用read_table函数),测试代码如下,非常简单,第一个参数为读取的t...

wushuiyong | 1075人阅读

如果你是一个面试者,怎么判断一个面试官的机器学习水平?

回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...

Apollo | 1366人阅读

想学习软件测试跟数据库,该怎么学习?

回答:随着互联网技术的不断发展,软件测试岗位受到了更多的关注,软件测试岗位的上升空间和薪资待遇也得到了明显的提升,而且软件测试人才目前处于比较短缺的状态。数据库相关技术一直是软件技术的重要组成部分,尤其在当下的大数据时代更是如此。因此,学习软件测试和数据库技术是不错的选择。学习软件测试和数据库技术,可以按照以下步骤进行:第一:学习编程语言。今天的软件测试岗位的技术含量已经比较高了,对于大部分专业的测试人...

itvincent | 716人阅读

从零开始,如何学习数据挖掘?

回答:这个问题思考了很久,作为过来人谈一谈,建议在看我这篇回答之前先去了解一下数据挖掘的概念和定义。在学习数据挖掘之前你应该明白几点:数据挖掘目前在中国的尚未流行开,犹如屠龙之技。数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效)数据挖掘适用于传统的BI(报表、OLA...

LoftySoul | 1044人阅读

学习大数据难吗?

回答:大数据的学习有一定难度,但是如果能有一个系统的学习计划,入门大数据也并不是那么困难。要想入门大数据需要做好以下几个方面的准备:第一,根据自身的知识结构找切入点。大数据的基础知识涵盖三部分内容,分别是计算机、数学和统计学,如果是这三个专业的毕业生,那么可以比较容易的进入大数据领域,可以从事的岗位也比较多(数据采集、数据整理、数据存储、数据分析、数据呈现等)。如果是非相关专业,那么要从计算机基础知识入...

Hegel_Gu | 1501人阅读

如何学习数据分析?

回答:优秀的数据分析师并不能速成,但是零经验也有零经验的捷径。市面上有《七周七数据库》,《七周七编程语言》。今天我们就《七周七学习成为数据分析师》,没错,七周。第一周:Excel学习掌握如果Excel玩的顺溜,可以略过这一周。但很多人并不会vlookup,所以有必要讲下。了解sum,count,sumif,countif,find,if,left/right,时间转换等。excel的各类函数很多,完全不...

zhigoo | 520人阅读

数据机器学习学习精品文章

  • 云计算机器学习适合你的组织吗?

    ...和商业发展迅速扩大的领域。   此外,据埃文斯数据公司最近的调查显示,650万技术开发人员正在使用某种形式的人工智能或机器学习,另有580万开发人员计划在六个月内开始使用人工智能或机器学习。鉴于全球有超过22...

    Tikitoo 评论0 收藏0
  • 云计算机器学习适合你的组织吗?

    ...为企业和商业发展迅速扩大的领域。 此外,据埃文斯数据公司最近的调查显示,650万技术开发人员正在使用某种形式的人工智能或机器学习,另有580万开发人员计划在六个月内开始使用人工智能或机器学习。鉴于全球有超过2...

    oujie 评论0 收藏0
  • 外行人都能看得懂的机器学习,错过了血亏!

    ...性理论等多门学科 简单来说:机器学习可以通过大量的数据或者以往的经验自动改进计算机程序/算法。 生成完模型f(x)之后,我们将样例数据丢进模型里边,就可以输出结果: 我们说机器学习可以自我学习,是因为我们会将...

    Tonny 评论0 收藏0
  • ApacheCN 人工智能知识树 v1.0

    ...器接口回顾 SciPyCon 2018 sklearn 教程 十五、估计器流水线 数据科学和人工智能技术笔记 一、向量、矩阵和数组 Sklearn 学习指南 第一章:机器学习 - 温和的介绍 线性回归/逻辑回归/softmax 回归 AILearning 第5章_逻辑回归 AILearning 第8...

    刘厚水 评论0 收藏0
  • 原创翻译 | 深度学习机器学习 - 您需要知道的基本差异!

    ...-不管大家明不明白它们的不同! 不管你是否积极紧贴数据分析,你都应该听说过它们。 正好展示给你要关注它们的点,这里是它们关键词的google指数: 如果你一直想知道机器学习和深度学习的不同,那么继续读下去...

    jsummer 评论0 收藏0
  • 前馈神经网络开山鼻祖---一些概念

    ...个值称之为损失(loss),我们的目标就是使对所有训练数据的损失和尽可能的小。   如果将先前的神经网络预测的矩阵公式带入到yp中(因为有z=yp),那么我们可以把损失写为关于参数(parameter)的函数,这个函数称之为损...

    MASAILA 评论0 收藏0

推荐文章

相关产品

<