回答:首先我认为,业务数据分析是业务和数分这两大块内容的集合体,学习业务和学习数据分析是同等重要的,既然题主问的是学习路径,那么我就分开说:先说数据分析,要学些什么按照我一贯推崇的学习路径,数据分析一定要先学基础和方法,再学工具和技能,但是很多人都恰恰本末倒置了,下面我就按照基础和工具的顺序,说一下应该学习哪些内容1、数据分析基础包括:(1)统计学基础。数理统计学是数据分析的基础之一,很多人连统计学概念...
回答:这些都是工具,6K估计是给你开的你所会的这些工具的价格,至于你值多少钱或者将来你在这个岗位上能值多少钱,这首先要看是否人岗匹配,岗位的设定和你会的东西是不是绝大部分吻合的。如果匹配那么就要看你用这些工具能产生多少有价值的增量信息,这个才是关键。首先,要知道业务数据分析的核心价值是什么?业务分析要熟悉行业特点,了解公司业务及流程,有针对性的抓住运营管理的痛点和关键点,才能有自己独到的见解和分析视角,...
回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:数据分析是干什么的?在企业里收集数据、计算数据、提供数据给其他部门使用的。数据分析有什么用?从工作流程的角度看,至少有5类分析经常做:工作开始前策划型分析:要分析一下哪些事情值得的做工作开始前预测型分析:预测一下目前走势,预计效果工作中的监控型分析:监控指标走势,发现问题工作中的原因型分析:分析问题原因,找到对策工作后的复盘型分析:积累经验,总结教训那数据分析是什么的?数据分析大体上分3步:1:获...
数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:分析目的不明确分析方法...
...据中台必须具备智能化能力,能够为业务提供一定的智能数据分析能力。 另一方面,除了基于数据自底向上的智能化驱动以外,还存在自上而下的企业智能化理念驱动。近几年来,许多智能技术日趋成熟,相应的智能化理念也...
... 看到一篇好文章,收藏一下 我在知乎关于《开发一个业务逻辑复杂的系统,应该怎么样设计才能使项目的扩展性更好?》做的回答。 既然业务逻辑复杂,那意味着项目前期的业务建模、需求分析、分析设计极为重要,直接...
...坑在这里分享出来,让准备搭建风控的人心里有个数。 业务安全风控设计101-信息采集 业务风控主要做四件事: 拿到足够多的数据 做足够灵活的分析平台去分析数据 产出风险事件进行阻拦风险 量化风险拦截的价值和不断分析...
...用户与后端业务系统的有效连接,构建起全新的、基于大数据分析的业务生态系统呢?传统企业在进行互联网+转型的过程中,用户将通过网站、APP与企业内部IT系统进行连接。以金融和零售领域的典型业务场景为例,过去消费者...
...: 入选Gartner和Forrester报告的AnalyticDB作为阿里巴巴的整套数据分析平台的核心产品之一,承载了将数据探索实时化,在线化的关键任务。 前言 2018年3月13日,Forrester发布了最新的云化数据仓库分析报告( Now Tech: Cloud Data Warehouse, ...
...已经开始将数据实时处理能力与AI能力相结合,实现智能数据分析业务的快速交付。 实际上,针对实时数据流的智能化处理技术已经在很多行业中得到了先验。例如在互联网直播领域,基于视频流的实时滤镜、实时特效算法已经...
...始数据存储。为什么要基于原始数据存储?因为在整个的数据分析阶段,可以细分为三个阶段。第一个就是传统的是 BI 阶段。第二个是数据的挖掘,第三个是数据的预测分析。 想解决这三个阶段的过程,以传统的方法是建一个...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...