回答:这个我有经验,我来答一下????♂️目前在我们数据行业内的日常用语中,数据分析和数据可视化这两个术语似乎已成为同义词。虽然说两者它都包含数据分析的内容,但实际上还是有一定的细微差别。就比如说数据分析:它更多的强调的是一个逻辑思维能力,强调的是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。而数据可视化分析:它就在数据分析的基础上涉...
回答:数据分析是干什么的?在企业里收集数据、计算数据、提供数据给其他部门使用的。数据分析有什么用?从工作流程的角度看,至少有5类分析经常做:工作开始前策划型分析:要分析一下哪些事情值得的做工作开始前预测型分析:预测一下目前走势,预计效果工作中的监控型分析:监控指标走势,发现问题工作中的原因型分析:分析问题原因,找到对策工作后的复盘型分析:积累经验,总结教训那数据分析是什么的?数据分析大体上分3步:1:获...
回答:首先我认为,业务数据分析是业务和数分这两大块内容的集合体,学习业务和学习数据分析是同等重要的,既然题主问的是学习路径,那么我就分开说:先说数据分析,要学些什么按照我一贯推崇的学习路径,数据分析一定要先学基础和方法,再学工具和技能,但是很多人都恰恰本末倒置了,下面我就按照基础和工具的顺序,说一下应该学习哪些内容1、数据分析基础包括:(1)统计学基础。数理统计学是数据分析的基础之一,很多人连统计学概念...
...数据技术中的风险、挑战和机遇的看法。该数据显示,大数据分析技术尽管相对较新,仍然有 86% 的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。调查对象被问到,与...
... 本报告涵盖了为了支持工作负载(涵盖OLTP、运营、BI和分析),查询引擎面临的挑战的细节,这些细节也可以作为访问数据库引擎、查询引擎和存储引擎组合以及满足事务、运营、分析或混合工作负载需求的指南。以下评估选...
之前提到动态加载就两个解决方案——手动分析和selenium。接下来的文章我们会来深入探讨它们,本文将首先,重点介绍前者——手动分析 手动分析是一个比较有难度,比较麻烦的解决方案,但优点也很明显:速度快,又能...
...行业分析专家,来看看他们列出的几大趋势吧。 1.云端大数据分析 Hadoop是一组有一定框架结构的工具,用来处理大型数据组。它原本用于机器群,但现在情况有所变化。Forrester Research一位分析师BrianHopkins表示,现在有越来越多...
... Bug最大的价值不在于找到并解决它,而在于通过对Bug的分析,使我们增加一些经验、掌握一些规律,以便更好地进行测试。 在对Bug进行分析时,一般很容易能想到的问题有: 这个Bug是什么? 为什么会出现这个Bug? 实际上,...
...务风控主要做四件事: 拿到足够多的数据 做足够灵活的分析平台去分析数据 产出风险事件进行阻拦风险 量化风险拦截的价值和不断分析案例进行策略优化 拿数据这件事几乎是决定风控系统成败的核心,由于篇幅问题我们先...
...积累了大量数据,那么使用这些数据能做什么呢? 微博数据分析很早就有人在做了,网上采集分析工具貌似有很多,搜索一下想找一些微博数据分析的具体方案。世事变幻,发现很多几年前的微博数据分析平台都不能用了,可...
...要的流行应用程序: Web开发 数据科学 - 包括机器学习,数据分析和数据可视化 脚本 Web开发 最近基于Python的Web框架(如Django和Flask)在Web开发中变得非常流行。 我为什么需要一个Web框架? 这是因为Web框架使构建通用后端逻辑...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...