回答:数据分析的应用几乎是无行业和人群限制的。数据分析的魅力体现在数据的价值和创新的能力,运用数据的能力越来越成为基础的职业技能,因此任何有兴趣和需求的人士都可以进入这个领域。涉及到数据分析学习和工具的选择, 那么久可以从知识和应用的角度入门数据分析的路径。01SQL数据库语言作为数据分析师,我们首先要知道如何获取数据,其中最常用的就是从关系型数据库中取数。因此,你可以不会R,但不能不会SQL。大数据...
回答:基础的小伙伴应该该怎么自学数据分析呢?我会从学习方式、学习内容、面试准备这三项内容展开介绍,那么废话不多说,我们直接进入正题。一、学习方式我们可以将学习方式划分为2类:①裸辞学习 ②在职学习一般情况不建议裸辞,因为裸辞的小伙伴在求职的时候会比较被动:心态问题 ,如果长时间找不到工作,要承受很大的心理压力;HR压制 ,这里指HR会压制你的薪资,比如面试官会问,什么时间能到岗,你会很急切的回复说,明天...
回答:先确认下自己是否对此感兴趣,正感兴趣就考虑学习,不论是自学还是参加学习,都务必要有坚定的信念,当然学习数据分析是需要一定的数学、统计基础,同时需要掌握一点数据分析的工具软件,若有人带你学习或指导你,将会事半功倍,我知道比较牛的数据分析专家是赵强,舒立克商学院数据分析教授,有兴趣可以了解下他,
回答:这个我有经验,我来答一下????♂️目前在我们数据行业内的日常用语中,数据分析和数据可视化这两个术语似乎已成为同义词。虽然说两者它都包含数据分析的内容,但实际上还是有一定的细微差别。就比如说数据分析:它更多的强调的是一个逻辑思维能力,强调的是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。而数据可视化分析:它就在数据分析的基础上涉...
回答:首先我认为,业务数据分析是业务和数分这两大块内容的集合体,学习业务和学习数据分析是同等重要的,既然题主问的是学习路径,那么我就分开说:先说数据分析,要学些什么按照我一贯推崇的学习路径,数据分析一定要先学基础和方法,再学工具和技能,但是很多人都恰恰本末倒置了,下面我就按照基础和工具的顺序,说一下应该学习哪些内容1、数据分析基础包括:(1)统计学基础。数理统计学是数据分析的基础之一,很多人连统计学概念...
... 2.1 监督学习 写给人类的机器学习 2.2 监督学习 II Python 数据分析与挖掘实战 第5章 挖掘建模 Python 数据分析与挖掘实战 第13章 财政收入影响因素分析及预测模型 与 TensorFlow 的初次接触 2. TensorFlow 中的线性回归 SciPyCon 2018 sklear...
...需时间:2-3h 课程内容:选取腾讯精选练习(50 题)解答 数据分析/挖掘 01 Excel入门课程 课程设计:杨煜,李严 组队学习说明:职场人士必备学习内容。通过集中式学习和大量实战练习,快速了解并掌握Excel核心功能,保证今后...
...编及时处理,谢谢!欢迎加入本站公开兴趣群商业智能与数据分析群兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识QQ群:81035754
...性理论等多门学科 简单来说:机器学习可以通过大量的数据或者以往的经验自动改进计算机程序/算法。 生成完模型f(x)之后,我们将样例数据丢进模型里边,就可以输出结果: 我们说机器学习可以自我学习,是因为我们会将...
...和商业发展迅速扩大的领域。 此外,据埃文斯数据公司最近的调查显示,650万技术开发人员正在使用某种形式的人工智能或机器学习,另有580万开发人员计划在六个月内开始使用人工智能或机器学习。鉴于全球有超过22...
...为企业和商业发展迅速扩大的领域。 此外,据埃文斯数据公司最近的调查显示,650万技术开发人员正在使用某种形式的人工智能或机器学习,另有580万开发人员计划在六个月内开始使用人工智能或机器学习。鉴于全球有超过2...
...-不管大家明不明白它们的不同! 不管你是否积极紧贴数据分析,你都应该听说过它们。 正好展示给你要关注它们的点,这里是它们关键词的google指数: 如果你一直想知道机器学习和深度学习的不同,那么继续读下去...
...ning-ai-future-fabio-ciucci欢迎加入本站公开兴趣群商业智能与数据分析群兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识QQ群:81035754
...不仅仅是深度学习。欢迎加入本站公开兴趣群商业智能与数据分析群兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识QQ群:81035754
作者:xiaoyu 微信公众号:Python数据科学 知乎:python数据分析师 上一篇主要分享了博主亲身转行数据分析的经历: 【从零学起到成功转行数据分析,我是怎么做的?】 本篇继上一篇将分享转行数据分析的一些经验和学习方...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...