回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:作为一个数据分析师来回答一下:我做这行两年多了,刚开始的时候用的多是MySQL数据库,当然,Oracle数据库也会用到,尤其是在金融行业或者国企都用Oracle,一般的公司使用MySQL数据库,可能是因为MySQL数据库免费吧。另外,在一家互联网公司,我遇到了mongodb,目前一些新兴的互联网公司使用nosql的也比较多,这个当时是现学现卖的。作为一个数据分析师,可能对数据库的使用一般是存取数据...
回答:Mssql强大,不弄担心后期数据库过大,性能问题,中小型项目能用得起,肯定首选。另外重要要考虑的是你的服务主程序是什么环境下运行的,如果是Windows,那就首选,主要是贵????????Mysql免费!Linux 免费!这是主要的。。。当然现在的MySQL用户量肯定是第一了,只要别达到这些互联网巨头的用户体量,都是够用的。当然,最牛的的当属甲骨文Oracle了。。。巨头的数据库应该都是用的这个
回答:一名合格的数据分析师应该掌握网页爬虫:Python或R数据存储:Excel或者Tableau、MangoDB等数据清洗:数据缺失处理等数据分析:线性回归等数据可视化:Python或R的可视化包进阶级数据分析师:统计知识运筹学知识机器学习知识掌握以上三个技能点便可称之为数据科学家至于面试要准备些啥?Simply按照上面技能点一一准备但是今天要说的是一项奇淫技巧那就是--写一篇数据分析的推文在这篇推文...
回答:大数据的技术大数据技术包括:1)数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。2)数据存取: 关系数据库、NOSQL、SQL等。3)基础架构: 云存储、分布式文件存储等。4)数据处理: 自然语言处理(NLP,Natural Language Processin...
数据分析和数据挖掘,是大数据应用的核心技术,也是大数据应用的关键所在。数据分析重要,但是,很多时候却不知道该如何去做,面对大量的数据,却无从下手。概括起来,经常面临的困难有:分析目的不明确分析方法...
摘要 在做数据分析的过程中,经常会想数据分析到底是什么?为什么要做数据数据分析?数据分析到底该怎么做?等这些问题。对于这些问题,一开始也只是有个很笼统的认识。 最近这两天,读了一下早就被很多人推荐的《...
摘要 在做数据分析的过程中,经常会想数据分析到底是什么?为什么要做数据数据分析?数据分析到底该怎么做?等这些问题。对于这些问题,一开始也只是有个很笼统的认识。 最近这两天,读了一下早就被很多人推荐的《...
...更多网易技术产品运营经验。 在回答小企业是否需要数据分析这个问题之前,不妨先想想下面两个问题: 你在电脑上建过表格吗? 你基于表格中的数据画过柱形图、饼状图、折线图吗? 可能你没又意识到,这些操作已经...
...载 · 可用性 · 安全性 · 与外部系统的交互性 · 报表 · 数据迁移 我坚信每一个这些类型的软件缺陷都需要被进一步解释。而且,那是我们现在的确要做的事情: 功能缺陷 如果软件是根据客户提供的需求开发的,那么它必须满...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...