回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...
回答:在日常开发运维工作中,经常会遇到多台服务器上的数据同步问题,特别是集群部署时,如果不是自动化同步数据,全靠人工同步那工作量就会很大。Linux的文件同步工具 RsyncRsync是Linux系统下的一款数据备份工具,使用它可以增量备份,不光光支持本地复制还支持远程同步,功能十分强大。1、Rsync优点:Rsync在第一次同步时是全量同步,后面同步时只会传输修改过的文件;在传输过程中还可以进行压缩传...
回答:在互联网企业中,多数项目可能都是按照两周一迭代的节奏去开发的,甚至不少项目都是日发布。发布项目看上去很简单,但项目一多、各种线上线下环境的配置还是很琐屑的,对于这类重复性工作是否可以自动化呢?这里就是我们要了解的Jenkins了。Jenkins是什么?Jenkins是当下被广泛使用的持续构建的可视化Web工具,它是用Java语言开发的,通过Jenkins可以将各类项目的编译、打包、分发、部署都变成...
...络 ( CNN )是这些方法中的一种,使得我们很容易理解为什么神经网络处理图像的方式极其类似于人脑加工声音刺激的方式。因此 CNN 很好地阐释了人脑加工听觉和视觉信息的过程以多种(而不是一种)方式彼此联系。关于 CNN ...
...数,然后就不会有新的记忆了。训练好了之后,不管什么时候来一个相同的输入,都会给出一个相同的输出。对于像Image Classification这样的问题来说没有什么问题,但是像Speech Recognition或者很多NLP的Task,数据都是有时序或结...
...通常依靠复杂的深度学习神经网络导航,并告诉它们该做什么。 但在去年,研究人员证明,仅仅只在路标上粘一两张小贴纸,神经网络就可能受骗,将道路上的「停车」标志误认为限速标志。 尽管对于机器学习算法,让海龟看...
摘要: 深度学习大潮为什么淹没传统的计算机视觉技术?听听大牛怎么说~ 这篇文章是受到论坛中经常出现的问题所创作的: 深度学习是否可以取代传统的计算机视觉? 这明显是一个很好的问题,深度学习(DL)已经彻底改...
...用TensorFlow框架开发不同的深度学习产品,还谈了谷歌为什么选择开源TensorFlow,以及让这个机器学习框架支持低功耗应用的方法。Warden此前是机器学习算法公司Jetpac 的CTO,在2014年该公司被谷歌收购后加入谷歌。Warden开场直奔主...
...研究所(IDL,Institue of Deep Learning)。 为什么拥有大数据的互联网公司争相投入大量资源研发深度学习技术。听起来感觉deeplearning很牛那样。那什么是deep learning?为什么有deep learning?它是怎么来的?又能干什么...
...己的IDE能够提高开发效率,方便版本管理。 3.1.Ubuntu 为什么使用Ubuntu? Ubuntu是一个Debian系分支的第一大系统,是用户量最大的linux发行版。因此,遇到任何问题一般都能够在用户社区askubuntu中得到解答。它的安装也非常的方...
...,色彩斑斓。这让我不禁思考:我们眼中的现实,究竟是什么?文字清晰、易读。机器人的双手在打字机上忙碌着。输出输入机器人又记录了第二项内容。纸张变长,内容随之向上移动,现在纸上有两项内容:哇,我竟然能看见...
...包含图像处理、计算机视觉、自然语言处理、模式识别、机器学习和相关领域算法的函数库。十一、运动检测程序 QMotionQMotion 是一个采用 OpenCV 开发的运动检测程序,基于 QT。十二、图像特征提取 cvBlobcvBlob 是计算机视觉应用中...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...