回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
回答:人脸识别系统是计算机科学的最新应用,它利用计算机技术和生物统计技术,在各种背景下识别出人脸,更进一步可以实施跟踪,它基于人的脸部特征,属于生物识别技术。人脸识别的过程可以分成人脸检测,人脸跟踪和人脸比对三个过程。人脸检测是在动态背景或者复杂背景下将人的面部找到,并从背景中分离出来。找到人脸,有数种方法可以实施。1.设计人脸的标准模板,然后系统将采集到的图像和标准人脸模板进行对比,从匹配程度上判断是...
...:$ br -algorithm FaceRecognition -compare me.jpg you.jpg二、计算机视觉库 OpenCVOpenCV 是 Intel 开源计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV 拥有包括 300 多个C函数的跨平...
...言,把论文梳理一下,或许有助于理解。Capsule:实体的视觉数学表征深度学习,其实就是一系列的张量变换。从图像、视频、音频、文字等等原始数据中,通过一系列张量变换,筛选出特征数据,以便完成识别、分解、翻译等...
...多图像和图像类别的信息时,它可以自动计算出来重要的视觉特征。在深度学习中使用的神经网络被布置成不同的层,数据一层一层根据顺序通过。在训练过程中,在神经网络中的不同的层成为专门识别不同类型的视觉特征的网...
最近,物体识别已经成为计算机视觉和 AI 最令人激动的领域之一。即时地识别出场景中所有的物体的能力似乎已经不再是秘密。随着卷积神经网络架构的发展,以及大型训练数据集和高级计算技术的支持,计算机现在可以在某...
...7 月 26 日,将标志着一个时代的终结。那一天,与计算机视觉顶会 CVPR 2017 同期举行的 Workshop——超越 ILSVRC(Beyond ImageNet Large Scale Visual Recogition Challenge),将宣布计算机视觉乃至整个人工智能发展史上的里程碑——IamgeNet ...
最初针对视觉信号设计出来的 CNN 也能处理听觉信号,最终帮助机器倾听和更好地理解我们。 CNN 在某些程度上能迁移学习,掌握多种模式的共同特征。有一系列神经网络机器学习方法不只是「有深度的」。在这段时间,针对先...
...He 合作的一项研究,首次解决了这一个问题,他们受人类视觉识别过程启发,结合对抗生成网络(GAN)的强大性能,提出了一个双路径 GAN(TP-GAN),能够在关注整体结构的同时,处理人脸面部细节,在不同的角度、光照条件都...
...实现以及论文链接。为保证文章简明,我只总结了计算机视觉领域的成功架构。什么是高级架构?相比于单一的传统机器学习算法,深度学习算法由多样化的模型组成;这是由于神经网络在构建一个完整的端到端的模型时所提供...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...