回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...
回答:ubt20我任是没装上tensorflow, apt源的质量堪忧. 我还是用我的centos7 ,这个稳定1903
回答:随着互联网技术的不断发展,软件测试岗位受到了更多的关注,软件测试岗位的上升空间和薪资待遇也得到了明显的提升,而且软件测试人才目前处于比较短缺的状态。数据库相关技术一直是软件技术的重要组成部分,尤其在当下的大数据时代更是如此。因此,学习软件测试和数据库技术是不错的选择。学习软件测试和数据库技术,可以按照以下步骤进行:第一:学习编程语言。今天的软件测试岗位的技术含量已经比较高了,对于大部分专业的测试人...
回答:多数公司会将测试人员按照职级划分,如初级测试,高级测试,资深测试。随着职位级别的不断提高,所要求的能力和技术也会越来越高,整体来说,如果你要应聘的是高级测试的话,岗位要求基本会是在某一个或多个领域内非常擅长。那么这里说的某一个领域其实就是测试行业内对岗位的更进一步细分。那么在测试行业内到底有那些细分的测试岗位呢 ?测试的不同岗位就目前测试行业来说,主要细分领域包括功能测试,自动化测试,白盒测试,性...
回答:软件测试就是模仿真实用户使用场景对软件的各个方面进行测试,软件测试工程师需要学习一下项技能1.专业技能:专业技能是必须要掌握的知识,包括黑白盒的测试,还要学习系统测试和功能测试相关内容,系统测试是在应用层面上进行测试,最基础的测试流程管理也是要学习的专业技能。2.软件编程的技能:编程程序过关,才能往单元测试和性能测试等难度比较大的工作方向发展3.数据库和操作系统:在测试中要配置各种测试环境,需要对...
回答:我是学软件开发专业的,方向基本也就确定了,要么前端,要么后端,或者大数据。首先,编程这个问题问的领域比较大,为什么说大?如我上述,学软件开发,要么前端,要么后端,也是编程,大数据,也是编程,人工智能一样也是编程……所以,没有明确一个具体的方向。编程世界,有一门古老的语言叫做C语言,它是C++和JAVA的祖先,一切语言的基础都来自它,所以,你不妨与它先认识。但是,现在因为人工智能的火起来的pytho...
IBM今日宣布推出了一款新的 PowerAI 深度学习软件,该软件基于 Power Systems 而构建,可帮助数据科学家与开发人员解决所面临的挑战,具体来说:它可以提供丰富的工具和数据准备功能,简化开发体验,还可以将 AI 系统训练所需...
...处理数据,然后负责维护它的团队发现,他们可以用基于深度学习的解决方案来替换它。Alphabet有很多这样的例子,我只能举一些已经公开的,比如说搜索排序的升级、数据中心节能、语言翻译、下围棋,这些在Alphabet内部并不...
...伟达的CEO黄仁勋曾经说,他最喜欢三件事——游戏、GPU、深度学习。这三件事也是英伟达的命脉所在。5年前黄仁勋英明的判断将GPU从游戏转向深度学习成就了他自己和他的公司在深度学习界的地位。不过,当一个市场被一家企...
...去这几年涌现出了全新类别的产品,这归功于机器学习和深度学习取得了非凡的进步。仅举几个例子,这些新技术在支持产品推荐、医疗成像中的计算机辅助诊断和自动驾驶汽车。大多数机器学习和深度学习算法需要的计算资源...
...似的人工智能研究。脸优在某种程度上代表了公司使用深度学习完成的研究,它的主要功能是在脸上加上虚拟面具,这些面具会随着脸的移动而移动,智能拟合到你的下巴、鼻子和眼睛上。它能做到如此,是因为背后的深度...
...去这几年涌现出了全新类别的产品,这归功于机器学习和深度学习取得了非凡的进步。仅举几个例子,这些新技术在支持产品推荐、医疗成像中的计算机辅助诊断和自动驾驶汽车。大多数机器学习和深度学习算法需要的计算资源...
日前,IBM 公司宣布推出其分布式深度学习软件的测试版,该软件证明了在深度学习表现出来的技术飞跃。深度学习是人工智能的一种形式,它依赖于人工神经网络的应用。其重点是让计算机能够像人们那样理解数字图像、视频...
进入门槛太低正在毁掉深度学习的名声!这么一篇标题忧心忡忡的讨论帖,毫无意外的在reddit上炸了。为什么发起这么一个讨论?先看看原po主是怎么说的。很长一段时间以来,我注意到很多自称深度学习专家、大咖的人,...
深度学习初学者经常会问到这些问题:开发深度学习系统,我们需要什么样的计算机?为什么绝大多数人会推荐英伟达 GPU?对于初学者而言哪种深度学习框架是较好的?如何将深度学习应用到生产环境中去?所有这些问题都可...
...let刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行:TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe、PyTorch和Theano,再次是MXNet、Chainer和CNTK。Chollet在推文中补充,Keras的使用在...
...款产品的更新和修复补丁。此发行版还添加了新的重要的深度学习功能,可简化工程师、研究人员及其他领域专家设计、训练和部署模型的方式。随着智能设备和物联网的发展,设计团队面临创造更加智能的产品和应用的挑战,...
...预感,2018年可能是一切都发生戏剧性变化的一年。2017年深度学习取得的惊人突破将在2018年以一种非常有力的方式延续下去。2017年的研究工作将会转移到日常的软件应用中。 整理了一份2018年深度学习的预测清单。 1、大部分深...
...预感,2018年可能是一切都发生戏剧性变化的一年。2017年深度学习取得的惊人突破将在2018年以一种非常有力的方式延续下去。2017年的研究工作将会转移到日常的软件应用中。 整理了一份2018年深度学习的预测清单。 1、大部分深...
...预感,2018年可能是一切都发生戏剧性变化的一年。2017年深度学习取得的惊人突破将在2018年以一种非常有力的方式延续下去。2017年的研究工作将会转移到日常的软件应用中。 整理了一份2018年深度学习的预测清单。 1、大部分深...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...