回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...
回答:ubt20我任是没装上tensorflow, apt源的质量堪忧. 我还是用我的centos7 ,这个稳定1903
回答:首先必须明确一点,安卓吃硬件和 Linux 系统没有关系,重点是,安卓仅仅是使用了 Linux 系统的底层,而所有的应用都是基于安卓的虚拟机来运行的。正是因为这层虚拟机,导致安卓操作系统相比 iOS 系统来说,比较耗费系统资源。而谷歌公司这么多年来,每年都在精心的打磨这套虚拟层,期待让他更快,更顺滑一些。最终谷歌也实在受不了这层虚拟层了,于是开启了另外一个独立的移动端操作系统的开发,也就是 Fuc...
回答:我们通常看到的卷积过滤器示意图是这样的:(图片来源:cs231n)这其实是把卷积过滤器压扁了,或者说拍平了。比如,上图中粉色的卷积过滤器是3x3x3,也就是长3宽3深3,但是示意图中却画成二维——这是省略了深度(depth)。实际上,卷积过滤器是有深度的,深度值和输入图像的深度相同。也正因为卷积过滤器的深度和输入图像的深度相同,因此,一般在示意图中就不把深度画出来了。如果把深度也画出来,效果大概就...
回答:只要能自主可控就有意义。如果纠结于谁发明创造的,那要回滚到机械时代从头自己再来一次。为什么这么说呢?如果操作系统从底层开始自己开发的,是不是有人问这个系统的开发语言是别人的;自己做一套语言可能又会问汇编架构是人家的,操作系统原理是人家的,网络通讯协议是人家的,很多底层算法是人家的,二进制是人家发明的,门电路逻辑是人家发明的,晶体管是人家的,电子管也是人家的,连机械计算机也是人家的。怎么办,落后就是...
回答:只要能自主可控就有意义。如果纠结于谁发明创造的,那要回滚到机械时代从头自己再来一次。为什么这么说呢?如果操作系统从底层开始自己开发的,是不是有人问这个系统的开发语言是别人的;自己做一套语言可能又会问汇编架构是人家的,操作系统原理是人家的,网络通讯协议是人家的,很多底层算法是人家的,二进制是人家发明的,门电路逻辑是人家发明的,晶体管是人家的,电子管也是人家的,连机械计算机也是人家的。怎么办,落后就是...
什么是 AI、机器学习与深度学习? 大家好,我是杨锋,作为一个大数据从业人员,相信大家整天都在被 AI、机器学习、深度学习等一些概念轰炸。有时候甚至有点诚惶诚恐,一方面作为一个业内人士而自豪,二方面觉得...
...学信息学硕士,热衷于开发自己的 GPU 集群和算法来加速深度学习。这篇博文最早版本发布于 2014 年 8 月,之后随着相关技术的发展和硬件的更新,Dettmers 也在不断对本文进行修正。2016 年 7 月 18 日,机器之心曾经推出文章为你...
...积过程。更糟糕的是,解卷积过程却是真的。但是他们在深度学习领域并不常见。实际的解卷积将恢复卷积过程。想象一下,将图像输入到单个卷积图中。现在把输出结果拿出来,然后把它丢入一个黑盒子中,然后再次出来的图...
...010年前后,我以前微软的同事俞栋老师、邓力老师等,将深度学习在图像领域的突破移植到语音识别领域,一下子把识别错误率降低了20%以上,这让原来感觉总是差点儿火候的语音识别突然看到了在某些场景下实用的希望。从图...
...,所以只需简略看看即可。以下是正文:卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。但卷积为什么如此强大?它的原理是什么?在这篇博客中我将...
...,所以只需简略看看即可。以下是正文:卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。但卷积为什么如此强大?它的原理是什么?在这篇博客中我将...
...翻译自:Which GPU(s) to Get for Deep Learning(http://t.cn/R6sZh27)深度学习是一个计算需求强烈的领域,GPU的选择将从根本上决定你的深度学习研究过程体验。在没有GPU的情况下,等待一个实验完成往往需要很长时间,可能是运行一天,...
...台,专注于图像处理、模式识别、机器学习、数据挖掘、深度学习、音频语音分析等领域开展技术研发和业务落地。序言——「弱弱」的人工智能说到人工智能(Artificial Intelligence, AI)人们总是很容易和全知、全能这样的词联系...
...台层:是AWS SageMaker平台。 AI框架层:由CNTK 、MXNET 各种深度学习框架构成。 1、AI应用层 主推三大成熟应用 1、Amazon Rekognition——基于深度学习的图像和视频分析 它能实现对象与场景检测、人脸分析、面部比较、人...
...I平台层:是AWS SageMaker平台。AI框架层:由CNTK 、MXNET 各种深度学习框架构成。1、AI应用层 主推三大成熟应用1、Amazon Rekognition——基于深度学习的图像和视频分析它能实现对象与场景检测、人脸分析、面部比较、人脸识别、名...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...