回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...
回答:这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。但是,回答量好少。而且最好的回答,竟然是讲amazon aws的,这对国内用户,有多大意义呢?我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!说到GPU租用的选择。ucloud、ucloud、ucloud、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还...
回答:云计算、大数据、人工智能都是当前科技界的热门技术,它们支撑了各行各业的发展。下面我通俗地回答一下。1、云计算①、云计算概念通俗讲解IT界只要讲云计算,就会用喝水的故事来通俗的解释,这里我扩展一下来来讲。故事如下:某村子里有一家人要喝水,于是就请人在自家门口挖了口水井,于是一家人喝上了水。这就是本地计算,也就是自己买服务器、装网络、装软件为自己的业务提供服务。这种模式投入成本比较高,需要自己建设、自...
...的研究者两位 Matthias Fey 和 Jan E. Lenssen,提出了一个基于 PyTorch 的几何深度学习扩展库 PyTorch Geometric (PyG),为 GNN 的研究和应用再添利器。论文:https://arxiv.org/pdf/1903.02428.pdfYann Lecun 也热情推荐了这个工作,称赞它是一个快速、美...
...iBand网卡。这是一个很好的深度学习配置吗?像TensorFlow和PyTorch这样的现代库非常适合并行化循环和卷积网络。以卷积为例,2/3/4 块GPU的期望加速大约分别是1.9x / 2.8x / 3.5x。对于循环网络,序列长度是最重要的参数,在常见的NLP...
...者不直接编写 GPU CUDA 代码,我们通常会使用软件库(如 PyTorch 或 TensorFlow)。但是,要想高效使用软件库,你需要选择合适的 GPU。在几乎所有情况下,这意味着你需要使用英伟达的产品。CUDA 和 OpenCL 是进行 GPU 编程的两种主要...
...Caffe迁移到Caffe2的教程,据说这个迁移非常简单。Caffe2和PyTorch有何不同?这是另外一个疑问。Caffe2长于移动和大规模部署。虽然Caffe2新增了支持多GPU的功能,这让新框架与Torch具有了相同的GPU支持能力,但是如前所述,Caffe2支持...
...,提供T4/V100S/2080Ti/3090/P40等多种配置GPU,预装TensorFlow、Pytorch、CUDA等算法框架,开机即用。Amazon EC2:亚马逊的弹性计算云服务提供了各种实例类型,包括GPU实例,适用于深度学习和机器学习任务。...
...上训练一个模型还有点麻烦,不过现在有所转机,因为 PyTorch 和 Caffe 2 提供了随着 GPU 数量几乎成线性提升的训练规模。另一个选择—同时训练两个模型似乎更有价值,但我决定现在先用一个强大的核心,以后再添加另一个。内...
...前更为流行的深度学习框架,如 TensorFlow、MXNet、Caffe 和 PyTorch,支持在有限类型的服务器级 GPU 设备上获得加速,这种支持依赖于高度特化、供应商特定的 GPU 库。然而,专用深度学习加速器的种类越来越多,这意味着现代编译...
....ai 的研究员给出了他们在高级框架上的答案。在 Keras 与 PyTorch 的对比中,作者还给出了相同神经网络在不同框架中性能的基准测试结果。目前在 GitHub 上,Keras 有超过 31,000 个 Stars,而晚些出现的 PyTorch 已有近 17,000 个 Stars。值...
...系统用户名为ubuntu)CUDA驱动已预装可以直接使用AI框架:pytorch / tensorflow如果选择挂载UFS,发现共享存储已自动挂载(到/home/ubuntu)
Theano、TensorFlow、Torch、MXNet 再到近日比较热门的 PyTorch 等等,深度学习框架之间的比较一直以来都是非常受人关注的热点话题。机器之心也曾发表过多篇相关的介绍和对比文章,如《主流深度学习框架对比:看你最适合哪一款...
...性,意在让各个算法业务不需重复诸如 Caffe、TensorFlow、PyTorch 等运行环境的构建,而是要一次构建所有用户都可用。这对平台来讲,需要做到应用环境管理、用户自定义环境、快速环境部署。 厘清这些需求之后,结合当时的技...
...对机器学习的框架,比如Tensorflow(最初由谷歌开发)或PyTorch(最初在Facebook开发)。此外,开源代码库(pandas、scikit-learn和matplotlib)用于实现模型(比如神经网络和数据显示)。这些模型库之所以至关重要,是由于它们已经过...
...。2.修复了一个阻止tfdbg使用tf.Session.make_callable的错误。Pytorch0.2.0这里是PyTorch的下一个主要版本,恰恰赶上了国际机器学习大会(ICML)。我们引入了期待已久的功能,如广播、高级索引、高阶梯度梯度,最后是分布式PyTorch。由...
...对机器学习的框架,比如Tensorflow(最初由谷歌开发)或PyTorch(最初在Facebook开发)。此外,开源代码库(pandas、scikit-learn和matplotlib)用于实现模型(比如神经网络和数据显示)。这些模型库之所以至关重要,是由于它们已经过...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...