回答:大家好,我们以java排序算法为例,来看看面试中常见的算法第一、基数排序算法该算法将数值按照个位数拆分进行位数比较,具体代码如下:第二、桶排序算法该算法将数值序列分成最大值+1个桶子,然后递归将数值塞进对应值的桶里,具体代码如下:第三、计数排序算法该算法计算数值序列中每个数值出现的次数,然后存放到单独的数组中计数累加,具体代码如下:第四、堆排序算法该算法将数值序列中最大值挑选出来,然后通过递归将剩...
回答:底层的算法很多都是C,C++实现的,效率高。上层调用很多是Python实现的,主要是Python表达更简洁,容易。
回答:我们已经上线了好几个.net core的项目,基本上都是docker+.net core 2/3。说实话,.net core的GC非常的优秀,基本上不需要像做Java时候,还要做很多的优化。因此没有多少人研究很正常。换句话,如果一个GC还要做很多优化,这肯定不是好的一个GC。当然平时编程的时候,常用的非托管的对象处理等等还是要必须掌握的。
回答:后台不等于内核开发,但了解内核肯定有助于后台开发,内核集精ucloud大成,理解内核精髓,你就离大咖不远了。程序逻辑抽取器支持c/c++/esqlc,数据库支持oracle/informix/mysql,让你轻松了解程序干了什么。本站正在举办注解内核赢工具活动,你对linux kernel的理解可以传递给她人。
回答:python入门的话,其实很简单,作为一门胶水语言,其设计之处就是面向大众,降低编程入门门槛,随着大数据、人工智能、机器学习的兴起,python的应用范围越来越广,前景也越来越好,下面我简单介绍python的学习过程:1.搭建本地环境,这里推荐使用Anaconda,这个软件集成了python解释器和众多第三方包,还自带spyder,ipython notebook等开发环境(相对于python自带...
回答:Python可以做什么?1、数据库:Python在数据库方面很优秀,可以和多种数据库进行连接,进行数据处理,从商业型的数据库到开放源码的数据库都提供支持。例如:Oracle, My SQL Server等等。有多种接口可以与数据库进行连接,至少包括ODBC。有许多公司采用着Python+MySQL的架构。因此,掌握了Python使你可以充分利用面向对象的特点,在数据库处理方面如虎添翼。2、多媒体:...
...玮,企业家,资深IT领域专家/讲师/作家,畅销书《精通Python网络爬虫》作者,阿里云社区技术专家。 以下内容根据演讲嘉宾视频分享以及PPT整理而成。 本文将围绕一下几个方面进行介绍: 聚类问题应用场景介绍 K-Means算法介...
...测定方式: 3.如何确定最佳的k值(类别数): 手肘法: python实现Kmeans算法: 1.代码如下: 2.代码结果展示: 聚类可视化图: 手肘图: 运行结果: 文章参考: 手肘法:K-means聚类最优k值的选取_qq_15738501的博客-CSDN博客...
...关键在于初始中心的选择和距离公式。 K-means 实例展示 python中km的一些参数: sklearn.cluster.KMeans( n_clusters=8, init=k-means++, n_init=10, max_iter=300, tol=0.0001, precompute_distances=auto, ...
...习 一、为什么机器学习重要 SciPyCon 2018 sklearn 教程 一、Python 机器学习简介 SciPyCon 2018 sklearn 教程 二、Python 中的科学计算工具 SciPyCon 2018 sklearn 教程 九、sklearn 估计器接口回顾 SciPyCon 2018 sklearn 教程 十五、估计器流水线 数据科学...
Scikit-learn 简介 官方的解释很简单: Machine Learning in Python, 用python来玩机器学习。 什么是机器学习 机器学习关注的是: 计算机程序如何随着经验积累自动提高性能。而最大的吸引力在于,不需要写任何与问题相关的特定代码,...
K-Means Clustering in OpenCV cv2.kmeans(data, K, bestLabels, criteria, attempts, flags[, centers]) -> retval, bestLabels, centers data: np.float32数据类型,每个功能应该放在一个列中 nclusters(K):集群数 bestLabels:预设的分类标签...
... Python之机器学习第一弹。 Python被称为最简单好上手的语言之一,基于其极强的关联性,对各种库的引用,和资源的关联,使其实现功能非常容易。一些底层逻辑不需过多...
...数目MinPts。 2. 用户地理位置信息的的聚类实现 本实验用python实现,依赖numpy, pandas, sklearn, scipy等科学计算library。 数据来自收集得到的用户的地理位置信息,即经纬度数据的序列集。 xy = numpy.array([[116.455788, 39.920767], [116.456065, 3...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...