回答:简单来说就是用用户id(mac、imei等)按时间分组排序,要是有特殊需求不能满足,可以用自定义。具体的需求您可以详细写出来!
...层的卷积神经网络(如Alexnet和VGGnet),深度压缩可以将模型大小减少35到49倍。即使对于全卷积神经网络(如GoogleNet和SqueezeNet),深度压缩也可以将模型大小减少10倍。而且上述两种压缩情况都不会降低模型预测的精度。当前的...
本文介绍支付宝App中的深度学习引擎——xNN。xNN通过模型和计算框架两个方面的优化,解决了深度学习在移动端落地的一系列问题。xNN的模型压缩工具 (xqueeze) 在业务模型上实现了近50倍的压缩比, 使得在包预算极为有限的移动...
...r for Apache MXNet(MMS)是一个开源组件,旨在简化深度学习模型的部署。部署深度学习模型不是一项简单的任务,它要求收集各种模型文件、搭建服务栈、初始化和配置深度学习框架、暴露端点、实时发送度量指标,并运行自定义...
前言近年来,大语言模型(Large Models, LLMs)受到学术界和工业界的广泛关注,得益于其在各种语言生成任务上的出色表现,大语言模型推动了各种人工智能应用(例如ChatGPT、Copilot等)的发展。然而,大模型的落地应用受到其较...
...论是新手还是高级开发人员,都可以使用来优化机器学习模型以进行部署和执行的技术。这些技术对于优化任何用于部署的TensorFlow模型都非常有用。特别是对于在内存紧张、功耗限制和存储有限的设备上提供模型的TensorFlow Lite...
...得了一些小小的成绩。算法方面,我们提出了自主研发的模型压缩方法,新型模型结构和目标检测框架;工程方面,我们研发出一套非数据依赖的量化训练工具,并且针对不同硬件平台,研发了高效推理计算库;同时我们也和服...
...百亿甚至千亿。进一步的,不少产品应用需要大规模深度模型的实时训练与更新,现有开源框架在分布式性能、计算效率、水平扩展能力以及实时系统适配性的等方面往往难以满足工业级生产应用的需求。 X-DeepLearning正是面向这...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...