回答:大家好,我们以java排序算法为例,来看看面试中常见的算法第一、基数排序算法该算法将数值按照个位数拆分进行位数比较,具体代码如下:第二、桶排序算法该算法将数值序列分成最大值+1个桶子,然后递归将数值塞进对应值的桶里,具体代码如下:第三、计数排序算法该算法计算数值序列中每个数值出现的次数,然后存放到单独的数组中计数累加,具体代码如下:第四、堆排序算法该算法将数值序列中最大值挑选出来,然后通过递归将剩...
回答:我们已经上线了好几个.net core的项目,基本上都是docker+.net core 2/3。说实话,.net core的GC非常的优秀,基本上不需要像做Java时候,还要做很多的优化。因此没有多少人研究很正常。换句话,如果一个GC还要做很多优化,这肯定不是好的一个GC。当然平时编程的时候,常用的非托管的对象处理等等还是要必须掌握的。
回答:后台不等于内核开发,但了解内核肯定有助于后台开发,内核集精ucloud大成,理解内核精髓,你就离大咖不远了。程序逻辑抽取器支持c/c++/esqlc,数据库支持oracle/informix/mysql,让你轻松了解程序干了什么。本站正在举办注解内核赢工具活动,你对linux kernel的理解可以传递给她人。
回答:这几天我也是因为一个项目而被迫使用vue,坦白的说vue和传统的网站开发思路不同,导致爱的人爱死,老程序员烦死的现状。主要区别:1传统方式:我们做一个网站,首先创建几个文件夹(css、js等等),页面需要用的资源文件,都放到各自的文件夹里。然后创建若干个HTML网页,一个个链接把这些若干网页串起来就OK,网页里需要有什么事件或效果,要么用原生js要么用jqurey,去操作某个dom,实现页面变化。...
回答:底层的算法很多都是C,C++实现的,效率高。上层调用很多是Python实现的,主要是Python表达更简洁,容易。
...没错,接下来就是为了讲述最基本的无监督学习的算法,K-Means聚类算法。 在这篇文章中,作者举了一个例子,将近年来各国球队的战绩进行聚类,分出世界一流,二流,三流球队,那么,显然当有一只新球队需要分类时,将他的...
K-means算法简介 K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。 K-menas的...
...将围绕一下几个方面进行介绍: 聚类问题应用场景介绍 K-Means算法介绍与实现 使用K-Means算法对公司客户价值进行自动划分案例实战 关联分析问题应用场景介绍 Apriori算法介绍 FP-Growth算法介绍 使用关联分析算法解决个性化推荐...
K-Means Clustering in OpenCV cv2.kmeans(data, K, bestLabels, criteria, attempts, flags[, centers]) -> retval, bestLabels, centers data: np.float32数据类型,每个功能应该放在一个列中 nclusters(K):集群数 bestLabels:预设的分类标签...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...