回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:数据分析是干什么的?在企业里收集数据、计算数据、提供数据给其他部门使用的。数据分析有什么用?从工作流程的角度看,至少有5类分析经常做:工作开始前策划型分析:要分析一下哪些事情值得的做工作开始前预测型分析:预测一下目前走势,预计效果工作中的监控型分析:监控指标走势,发现问题工作中的原因型分析:分析问题原因,找到对策工作后的复盘型分析:积累经验,总结教训那数据分析是什么的?数据分析大体上分3步:1:获...
回答:一名合格的数据分析师应该掌握网页爬虫:Python或R数据存储:Excel或者Tableau、MangoDB等数据清洗:数据缺失处理等数据分析:线性回归等数据可视化:Python或R的可视化包进阶级数据分析师:统计知识运筹学知识机器学习知识掌握以上三个技能点便可称之为数据科学家至于面试要准备些啥?Simply按照上面技能点一一准备但是今天要说的是一项奇淫技巧那就是--写一篇数据分析的推文在这篇推文...
...入门实战与大家分享了分类算法,在本文中将为大家介绍聚类算法和关联分析问题。分类算法与聚类到底有何区别?聚类方法应在怎样的场景下使用?如何使用关联分析算法解决个性化推荐问题?本文就为大家揭晓答案。 本次...
...。如果在报警流出现的时候,通过处理程序,将报警进行聚类,整理出一段时间内的报警摘要,那么运维人员就可以在摘要信息的帮助下,先对当前的故障有一个大致的轮廓,再结合技术知识与业务知识定位故障的根本原因。 ...
...么在理解了监督学习和非监督学习的基础上,接下来就以聚类和类别分类等为切入点来了解一下这些分析方法。根据其用法,分析方法可以分为几种。其中,图所示的3 种方法的使用频率特别高,接下来将详细讲解这3 种方法。 ...
...集中在有监督学习上,导致无监督被长期忽略了。 图4:聚类示意图 白山ATD(Advanced Threat Detection,深度威胁识别,新一代的SIEM@AI系统)产品大量使用了无监督学习技术来进行威胁事件识别,无监督学习的本质是将数据进行聚类...
...集中在有监督学习上,导致无监督被长期忽略了。 图4:聚类示意图 白山ATD(Advanced Threat Detection,深度威胁识别,新一代的SIEM@AI系统)产品大量使用了无监督学习技术来进行威胁事件识别,无监督学习的本质是将数据进行聚类...
...智能技术笔记 十四、K 最近邻 KMeans AILearning 第10章_KMeans聚类 CS229 中文笔记 十三、聚类 Scikit-learn 秘籍 第三章 使用距离向量构建模型 PythonProgramming.net 系列教程 第三部分 聚类 写给人类的机器学习 三、无监督学习 Python 数据分...
原文链接 https://zhangmingemma.github.... 聚类算法介绍 聚类是将数据对象的集合分成相似的对象类的过程。使得同一个簇(或类)中的对象之间具有较高的相似性,而不同簇中的对象具有较高的相异性。按照聚类的尺度,聚类...
...型中,权重被称为锚向量(anchor vector),以表示它们在聚类输入数据中的作用。也就是说,我们试图计算输入向量和锚向量之间的相关性,然后测量其相似度。为什么用非线性激活函数?与 MLP 仅用 1 步考虑所有像素的交互作用...
...earning) 朴素贝叶斯(Naive Bayes) 决策树(Decision trees) 聚类 聚类一般应用于数据自然分组。比如产品特征识别、客户细分等任务都是聚类的一些应用场景。以下机器学习方法用于聚类问题: 均值漂移(Mean-shift) K-均值(K-mea...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...