回答:pandas是python一个非常著名的数据处理库,内置了大量函数和类型,可以快速读取日常各种文件,包括txt,csv,excel,json,mysql等,为机器学习模型提供样本输入(包括数据预处理等),下面我简单介绍一下这个库的使用,以读取这5种类型文件为例:txt这里直接使用read_csv函数读取就行(早期版本中可以使用read_table函数),测试代码如下,非常简单,第一个参数为读取的t...
回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...
回答:在日常开发运维工作中,经常会遇到多台服务器上的数据同步问题,特别是集群部署时,如果不是自动化同步数据,全靠人工同步那工作量就会很大。Linux的文件同步工具 RsyncRsync是Linux系统下的一款数据备份工具,使用它可以增量备份,不光光支持本地复制还支持远程同步,功能十分强大。1、Rsync优点:Rsync在第一次同步时是全量同步,后面同步时只会传输修改过的文件;在传输过程中还可以进行压缩传...
...人工智能系统研究总监David Schubmehl表示:组织正在开发基于机器学习和深度学习的下一代智能应用项目,以及其他认知/人工智能技术。随着企业竞相将预测性和规范性功能嵌入其应用程序组合,人工智能成为企业和商业发展...
...人工智能系统研究总监David Schubmehl表示:组织正在开发基于机器学习和深度学习的下一代智能应用项目,以及其他认知/人工智能技术。随着企业竞相将预测性和规范性功能嵌入其应用程序组合,人工智能成为企业和商业发展...
...习的可能,五十年代到七十年代有一些机器学习的研究如基于神经网络的连接主义学习、感知机、基于逻辑表示的符号主义学习、以决策理论为基础的学习技术、强化学习等。但机器学习独立成为一个学科领域是在八十年代。)...
...器学习 2.2 监督学习 II Python 数据分析与挖掘实战 第9章 基于水色图像的水质评价 数据科学和人工智能技术笔记 十五、支持向量机 Sklearn 学习指南 第二章:监督学习 K 近邻 AILearning 第2章_K近邻算法 Scikit-learn 秘籍 第三章 使用...
...果你想了解来自应用与基础架构的大量数据的意义,使用基于规则的方法无疑是死路一条。在新的软件时代,你必须利用机器学习进行实时的数据分析,这是保证服务质量的必备条件。无可否认,IT 领域正变得越发混杂、虚拟化...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...