回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...
回答:从事软件开发十几年了,对于程序员的工作有一点自我的见解,首先程序员的工作属于一个技术活,技术类的工种需要时间的积累,但要达到某个领域的技术专家,首先是时间层面的积累,但仅仅是积累是不够的,不是达到多少年一定成为技术的专家,成为某个领域的佼佼者,时间只是其中一个因素。如何成为某个技术领域的专家?牢固的基本功。要达到某种境界没有牢固的基本功做铺垫几乎是不可能的事情,程序员要说到基本功其实是一种很笼统的...
回答:pandas是python一个非常著名的数据处理库,内置了大量函数和类型,可以快速读取日常各种文件,包括txt,csv,excel,json,mysql等,为机器学习模型提供样本输入(包括数据预处理等),下面我简单介绍一下这个库的使用,以读取这5种类型文件为例:txt这里直接使用read_csv函数读取就行(早期版本中可以使用read_table函数),测试代码如下,非常简单,第一个参数为读取的t...
回答:谢谢邀请回答,作为一个用python多年的编程一线的码农来说回答这个问题,还是比较恰当的。人工智能是以后社会发展的趋势学习人工智能最简单的入门语言就是Python,而且也是现在应用的最广泛的人工智能语言。Python不仅能做人工智能,而且它在数据分析和数据爬虫以及很多包括游戏开发上面,也有不俗的表现。学会的python不仅仅会为学习生活带来便利,而且学会python就为入门人工智能打好了很坚实的基...
...者信息和技术人攻略介绍。) 导语:本期访谈对象@小猴机器人,清华人工智能专业博士在读。2009年开始,他参与实验室的无人车项目,和军事交通学院共同研发军交猛狮III号无人车。这辆由黑色现代ix35改装的大家伙,配备...
...合整理贡献,内容涵盖AI入门基础知识、数据分析挖掘、机器学习、深度学习、强化学习、前沿Paper和五大AI理论应用领域:自然语言处理,计算机视觉,推荐系统,风控模型和知识图谱。是你学习AI从入门到专家必备的学习路线...
摘要: 本文简单总结了机器学习的几大任务及其对应的方法,方便初学者根据自己的任务选择合适的方法。当掌握机器学习基本知识以及清楚自己所要处理的任务后,应用机器学习就不会那么难了。 机器学习一直是一个火热...
...合理。 在不便中,一直蕴藏着技术革新的机会!这时,机器学习来了! 机器学习是解决安全问题的金钥匙 机器学习其实早已到来。由上图中可以看出,目前大红大紫的深度学习,其源头-神经网络,早在上世纪70年代就已经被...
...我和Andrej Karpathy喝了几杯,聊起了我们认为未来几年里,机器学习会走上什么方向。Andrej抛出了软件2.0这个概念,我立刻感到羡慕嫉妒,因为这个词所捕捉到的,是我在几百个项目中所见到的日常。他写了博客发出来之前,...
... 1956年的达特茅斯会议首次提出人工智能的定义:使一部机器的反应方式像一个人在行动时所依据的智能。经过超过半个世纪的发展,人工智能已经渡过了简单地模拟人类智能的阶段,发展为研究人类智能活动的规律,构建具有...
...过程中不需要人类提供物体或对象的标签,这是传统的的机器学习工具做不到的。随着人工智能的发展,这些神经网络将更加快速、灵活、高效,它们随着机器规模的增加而变得更加聪明,随着时间的推移将能够解决越来越多的...
...过程中不需要人类提供物体或对象的标签,这是传统的的机器学习工具做不到的。随着人工智能的发展,这些神经网络将更加快速、灵活、高效,它们随着机器规模的增加而变得更加聪明,随着时间的推移将能够解决越来越多的...
本文原载IEEE,作者Lee Gomes,由机器之心翻译出品,参与成员:电子羊、翬、泥泥刘、赤龙飞、郑劳蕾、流明。人工智能经历了几次低潮时期,这些灰暗时光被称作「AI寒冬」。这里说的不是那段时期,事实上,人工智能如今变...
...标和定义 三、AI中台的实施路线 四、实例分析-智能投顾机器人为例 五、总结 六、Q&A PPT:https://pan.baidu.com/s/1-nqZ... 视频:https://v.qq.com/x/page/e0856... 分享实录 一、AI中台的提出 1.1 中台战略的兴起 自从中台战略被提出并得到成功...
...家 李成华李成华介绍,京东DNN Lab主要专注于人工智能和机器学习领域前瞻性的研究,涉及神经网络、知识层次、异构计算等技术的研发。DNN Lab目前主要成果包括命名实体识别、用户意图识别、用户画像和自动问答等,产品化是...
...用的行动。AI包括学习,推理,计划,感知,语言理解和机器人等任务。 常见的误解 这是一项特定的技术。例如,在20世纪80年代和90年代,人们常常看到将AI与基于规则的专家系统混淆的文章; 在2010年代,人们看到AI与多层卷积...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...