回答:首先建议题主描述清楚应用场景,否则别人做的方案可能都不符合需求。就Hadoop和OpenStack的纠结而言,支撑数据分析用前者,做资源管理用后者。=================补充=============题主的需求,实质是搭建一个IoT实时大数据平台,而不是一般意义的私有云。IoTa大数据平台除了数据采集和结果反馈,其余部分和一般的大数据平台相差不多。OpenStack长于管理VM资源管理...
回答:Hadoop是目前被广泛使用的大数据平台,Hadoop平台主要有Hadoop Common、HDFS、Hadoop Yarn、Hadoop MapReduce和Hadoop Ozone。Hadoop平台目前被行业使用多年,有健全的生态和大量的应用案例,同时Hadoop对硬件的要求比较低,非常适合初学者自学。目前很多商用大数据平台也是基于Hadoop构建的,所以Hadoop是大数据开发的一个重要内容...
回答:pandas是python一个非常著名的数据处理库,内置了大量函数和类型,可以快速读取日常各种文件,包括txt,csv,excel,json,mysql等,为机器学习模型提供样本输入(包括数据预处理等),下面我简单介绍一下这个库的使用,以读取这5种类型文件为例:txt这里直接使用read_csv函数读取就行(早期版本中可以使用read_table函数),测试代码如下,非常简单,第一个参数为读取的t...
回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...
回答:spring框架Spring框架是由于软件开发的复杂性而创建的。Spring使用的是基本的JavaBean来完成以前只可能由EJB完成的事情。然而,Spring的用途不仅仅限于服务器端的开发。从简单性、可测试性和松耦合性角度而言,绝大部分Java应用都可以从Spring◆目的:解决企业应用开发的复杂性◆功能:使用基本的JavaBean代替EJB,并提供了更多的企业应用功能◆范围:任何Java应用S...
...储能力提升的速度。而大数据的处理方法是:采用多机器、多节点的处理大量数据方法,而采用这种新的处理方法,就需要有新的大数据系统来保证,系统需要处理多节点间的通讯协调、数据分隔等一系列问题。总之,采用...
关于机器学习的11个开源工具 翻译:疯狂的技术宅英文标题:11 open source tools to make the most of machine learning英文连接:https://www.infoworld.com/art...本文首发于微信公众号:充实的脑洞 使用这些多样化、易于实现的库和框架,挖掘...
导读过去几年以来,机器学习已经开始以前所未有的方式步入主流层面。这种趋势并非单纯由低成本云环境乃至极为强大的GPU硬件所推动; 除此之外,面向机器学习的可用框架也迎来了爆发式增长。此类框架全部为开源成果,但...
...olume)指定要处理的数据量。对于大量数据,我们需要大型机器或分布式系统。计算时间随数据量的增加而增加。所以如果我们能并行化计算,最好使用分布式系统。数据可以是结构化数据、非结构化数据或介于两者之间的数据。...
hadoop是一个开源软件框架,可安装在一个商用机器集群中,使机器可彼此通信并协同工作,以高度分布式的方式共同存储和处理大量数据。最初,Hadoop 包含以下两个主要组件:Hadoop Distributed File System (HDFS) 和一个分布式计算...
...纯正的男声和女声发音。将文本转换成语音时,神经元的机器翻译还能理解情感、实体、重要短语、主题等。如果你觉得语速有点快,你可以对 Amazon Polly 语音进行修改。Amazon Polly 支持词典和 SSML 标记,使您能够从多方面控制语...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...