回答:如果面试官始终问你,机器学习是什么?要学什么课程?发展方向是什么?诸如此类泛泛的问题,这说明他机器学习水平一般。如果面试官问你,人工神经网络、贝叶斯学习主要研究什么?Boosting与Bagging算法的主要区别是什么?这说明他对机器学习还算了解。如果他给你如下三张图,并让你指出每张的含义,现场用计算机编程,或者搜一段算法程序,估计你要很重视他了,应当是个高手。总结:千万不要小看面试官,即使他是个...
回答:pandas是python一个非常著名的数据处理库,内置了大量函数和类型,可以快速读取日常各种文件,包括txt,csv,excel,json,mysql等,为机器学习模型提供样本输入(包括数据预处理等),下面我简单介绍一下这个库的使用,以读取这5种类型文件为例:txt这里直接使用read_csv函数读取就行(早期版本中可以使用read_table函数),测试代码如下,非常简单,第一个参数为读取的t...
回答:在日常开发运维工作中,经常会遇到多台服务器上的数据同步问题,特别是集群部署时,如果不是自动化同步数据,全靠人工同步那工作量就会很大。Linux的文件同步工具 RsyncRsync是Linux系统下的一款数据备份工具,使用它可以增量备份,不光光支持本地复制还支持远程同步,功能十分强大。1、Rsync优点:Rsync在第一次同步时是全量同步,后面同步时只会传输修改过的文件;在传输过程中还可以进行压缩传...
前言 机器学习和深度学习现在很火!突然间每个人都在讨论它们-不管大家明不明白它们的不同! 不管你是否积极紧贴数据分析,你都应该听说过它们。 正好展示给你要关注它们的点,这里是它们关键词的google指数: ...
... 前言 只有光头才能变强 没错,这篇主要跟大家一起入门机器学习。作为一个开发者,人工智能肯定是听过的。作为一个开发面试者,肯定也会见过机器学习这个岗位(反正我校招的时候就遇到过)。 可能还会听过或者见...
...hu.com/p/f143... 我认为对偏差 - 方差之间的权衡判读对学习机器学习是非常重要的。那么为什么这么说呢?因为这个现象的背后是所有参数,性能和几乎所有机器学习模型的深层原因。如果你能很深刻的理解这个,我保证你能很好...
...稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中。若编码矩阵或特征表达矩阵是稀疏矩阵时,其计算速度会大大提升。对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示、自然语言处理等领域。...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...