回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:作为一个数据分析师来回答一下:我做这行两年多了,刚开始的时候用的多是MySQL数据库,当然,Oracle数据库也会用到,尤其是在金融行业或者国企都用Oracle,一般的公司使用MySQL数据库,可能是因为MySQL数据库免费吧。另外,在一家互联网公司,我遇到了mongodb,目前一些新兴的互联网公司使用nosql的也比较多,这个当时是现学现卖的。作为一个数据分析师,可能对数据库的使用一般是存取数据...
回答:一名合格的数据分析师应该掌握网页爬虫:Python或R数据存储:Excel或者Tableau、MangoDB等数据清洗:数据缺失处理等数据分析:线性回归等数据可视化:Python或R的可视化包进阶级数据分析师:统计知识运筹学知识机器学习知识掌握以上三个技能点便可称之为数据科学家至于面试要准备些啥?Simply按照上面技能点一一准备但是今天要说的是一项奇淫技巧那就是--写一篇数据分析的推文在这篇推文...
回答:以关系型数据库为例,数据库里数据是存放在数据表里的,数据通过sql语句进行操作。sql语句里面对数据的修改是通过update操作实现的,基本语法为: update 表名称 set 字段名=新值 where 数据过滤条件。举个简单例子,有个学生成绩数据表表,批量修改成绩大于90分的等级为优秀,操作的sql语句就可以写为: update student_exam set grade=优秀 wher...
回答:大数据的技术大数据技术包括:1)数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。2)数据存取: 关系数据库、NOSQL、SQL等。3)基础架构: 云存储、分布式文件存储等。4)数据处理: 自然语言处理(NLP,Natural Language Processin...
...需要围绕业务问题来收集相关的数据,并对收集来的数据进行预处理(清洗、转化、提取、计算),如果使用FineBI之类的BI工具来处理的话就是先抽取数据、ETL处理数据,然后在前端多维度分析,并对分析结果进行可视化,最后...
...例子 —— 分析访客行为的路径,我们拿一个网站的数据进行分析,针对网站的访客,我们可以通过分析其访问前期、中期、后期的行为习惯去了解哪些引流的渠道需要加强投入,以及使用这些来指导内容编辑和竞品研究分析工...
...DA数据分析研究院原创作品,转载需授权 1.为什么选择Python进行数据分析? Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅读起来像是...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...