回答:人工智能涉及到的知识结构比较复杂,是一个典型的多学科交叉领域,涉及到哲学、数学、计算机、经济学、神经学和语言学等诸多内容。正因如此,人工智能领域的研发需要克服诸多困难,每一次进步都需要付出巨大的努力。虽然人工智能已经经过了60多年的发展,但是目前人工智能依然处在行业发展的初期。编程语言是实现人工智能产品的一个重要工具,不少编程语言都可以完成人工智能产品的开发任务,比如C、Python、Java、C...
回答:顶尖AI人才:10%在中国,50%在美国主导人工智能(AI)研究和开发的约半数顶尖人才集中于美国。AI是数据经济的核心技术。如果负责最尖端研究的群体薄弱,中国的竞争力有可能下降。加拿大的AI初创企业「Element AI」根据2018年内在21个国际学会上发表的论文调查了作者人数和经历,统计了顶尖AI人才的分布。调查显示,全球有2.24万AI方面的顶尖人才。其中约半数在美国(1万295人),其次是...
回答:我是学软件开发专业的,方向基本也就确定了,要么前端,要么后端,或者大数据。首先,编程这个问题问的领域比较大,为什么说大?如我上述,学软件开发,要么前端,要么后端,也是编程,大数据,也是编程,人工智能一样也是编程……所以,没有明确一个具体的方向。编程世界,有一门古老的语言叫做C语言,它是C++和JAVA的祖先,一切语言的基础都来自它,所以,你不妨与它先认识。但是,现在因为人工智能的火起来的pytho...
回答:人工智能是一个大的概念,具体落地人工智能项目会接触机器学习和深度学习框架,这些框架大部分是基于Python开发的,所以要想深入人工智能项目开发,python语言的学习也是必须的!
回答:人工智能目前主流还是用的python语言和C/C++。其实大家在网上搜索,都可以查得到,人工智能用的是python语言。实际呢。人工智能的底层逻辑都是用C/C++写的。python只是负责来写一些实现的逻辑。例如第一步是什么、第二部是什么等等。人工智能的核心算法都是用C/C++写的,因为是计算密集型,还需要非常精细的优化,还需要GPU,还需要专用硬件的接口之类的。而这些,只有C/C++可以做到。而...
回答:谢楼主提问!人工智能与传统编程并没有太多差异,唯一的差异是需要大量数据和算力来进行模型拟合!AI=大数据(算料数据)+算法(深度学习、基于规则、基于知识、基于统计等等大多是递归循环结构)+算力(算力非常高,智能算法才能更好的运作)传统软件编程=数据结构(相对于AI少量数据)+算法(算法相对机器并不是太复杂递归运算较少)+算力(不需要太多算力)三维模拟软件=数据结构(相对于普通应用软件中等数据)+算...
人工智能已经成为越来越火的一个方向。普通程序员,如何转向人工智能方向,是知乎上的一个问题。本文是对此问题的一个回答的归档版。相比原回答有所内容增加。 目的 本文的目的是给出一个简单的,平滑的,易于实现...
...年的研究经验做了一下分享,希望本文对于即将开始从事人工智能研究的朋友有所帮助。 人工智能研究这个领域是有一定门槛的。对于初学者来说,一般通常的做法是直接购买一些热门的书籍,比如西瓜书、花书、xx...
... 作者:Nick StattCDA数据分析研究院原创作品, 转载需授权 人工智能领域近年来飞速发展,关于教会计算机如何认识世界、理解世界,并最终能够执行复杂的任务等方面一直是备受人们关注的话题。该行业的发展速度和目标一方面...
...立了联系,后来我们所熟知的电脑,以及还没有实现的人工智能,都基于这个设想,加之在战后图灵编写的关于ACE的设计说明书,让图灵被称为计算机科学之父。 1950年,图灵发表《机器能思考吗》,在这篇论文中,他...
...历和我多么喜欢数据分析。他坚持认为我应该选吴恩达的人工智能入门课程。那时的我不知道关于人工智能的任何事物,除了用于视频游戏的伪人工智能(在完成 Jerry Cain 的课程后,我曾经因兴趣加入视频游戏项目)。我非常怀...
...n Learning by Back Propagation》,提出了反向传播这一深刻影响人工智能领域的方法。今天的他又一次呼吁研究者们对反向传播保持怀疑态度,并准备在理论体系上推倒重来。Geoffrey Hinton 很是怀疑当前干着粗重活的人工智能1986 年,Geo...
...的论文。 MIT’s Artificial Intelligence Lab Publications ,MIT 和人工智能相关的论文。 MIT’s Distributed System’s Reading Group ,MIT 和分布式系统相关的论文。 arXiv Paper Repository ,arXiv 是一个收集物理学、数学、计算机科学与生物学的论文...
...00 个创业项目,这是一个非常让人惊讶的数据。由此得出关于创业项目的质量和生存周期的一些简单结论。第一,高质量凤毛麟角,第二,因为基础用户的缺失会导致生存周期短。如何增加用户基数,发展更多具有高实用性 DApp ...
在过去几年中,深度学习改变了整个人工智能的发展。深度学习技术已经开始在医疗保健,金融,人力资源,零售,地震检测和自动驾驶汽车等领域的应用程序中出现。至于现有的成果表现也一直在稳步提高。在学术层面,机...
深度学习的出现让很多人工智能相关技术取得了大幅度的进展,比如语音识别已经逼近临界点,即将达到Game Changer水平;机器视觉也已经在安防、机器人、自动驾驶等多个领域得到应用。 而自然语言处理(NLP)被视为深度学习...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...