回答:这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。但是,回答量好少。而且最好的回答,竟然是讲amazon aws的,这对国内用户,有多大意义呢?我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!说到GPU租用的选择。ucloud、ucloud、ucloud、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还...
回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...
...架,如 TensorFlow、MXNet、Caffe 和 PyTorch,支持在有限类型的服务器级 GPU 设备上获得加速,这种支持依赖于高度特化、供应商特定的 GPU 库。然而,专用深度学习加速器的种类越来越多,这意味着现代编译器与框架越来越难以覆盖...
...文,4个时期),训练双向LSTM的成本。由上图可知,专用服务器是控制成本的较佳选择。这项基准测试横向比较了以下硬件平台:亚马逊AWS EC2,谷歌Google Cloud Engine GCE,IBM Softlayer,Hetzner,Paperspace,以及LeaderGPU,这些硬件提供商...
...Chromium 项目的讲解。 书接上文 浏览器内核之渲染基础 1. 硬件加速基础 1.1 概念 硬件加速技术是指:使用 GPU 的硬件能力为帮助渲染网页,在为 GPU 的作用主要是用来绘制 3D 图形并且性能特别好。 对于 GPU 绘图而言,当网页分层...
...界上最快的主题模型训练算法和系统LightLDA,只用数十台服务器即可完成以前数千台服务器才能实现的大规模主题模型,该技术成功应用于微软在线广告系统,被当时主管研究的全球副总裁周以真称为年度最好成果。2015年至...
...都属于计算密集型应用,一般都会使用单价较昂贵的 GPU 服务器。但随着业务的开展,各算法团队仅针对各自的问题做规划,导致了一种小作坊式的生产局面。 作坊式生产方式在早期有其积极的一面,能够保证创新的灵活性,但...
...计算多元化的需求,越来越多的场景开始引入GPU、FPGA等硬件进行加速,异构计算应运而生。异构计算(Heterogeneous Computing),主要指不同类型的指令集和体系架构的计算单元组成的系统的计算方式。20世纪80年代,异构计算技术...
...屏霸气地立在多媒体教室的课桌上,地上却看不到杂乱的服务器、数据线等基本硬件设备,整个教室排列得井然有序。据南开大学文学国家级实验教学中心实验师冯欢博士介绍,正因为多媒体教室空间狭小,之前使用传统工作站...
...讨论下为什么CPU < GPU < TPU,以及存不存在比TPU更加强大的硬件设备。 主频为2GHz的单核CPU 只能串行执行指令,1秒可以执行数千万到数亿次操作。随着摩尔定律终结,人们通过在一个CPU上集成更多的核心来提高计算力,譬如一个CP...
...杂的系统才行。在生产中使用深度学习一块 CPU 就可以,服务器可任选。大多数使用案例我们都推荐这么做。以下是几个要点:在生产中进行训练的情况非常少见。即使你想每天都更新模型权重,也无需在生产中进行训练。这是...
...挥着不可替代的作用。往期文章中,小编对加速原理、GPU服务器选择、GPU存储性能提升等均有所介绍。为增进大家对GPU的认识,本文将对GPU的5种虚拟化技术的略予以介绍。如果你对GPU具有兴趣,不妨继续往下阅读哦。一、设备...
...对不同硬件平台,研发了高效推理计算库;同时我们也和服务器研发团队一起抽象出了一套软硬件产品化方案,以服务多样的业务形式,并在真实业务场景中实验落地。 在后面的篇幅中,我们主要会从算法探索、训练工具、推...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...