回答:我是做JAVA后台开发的,目前为止最多处理过每天600万左右的数据!数据不算特别多,但是也算是经历过焦头烂额,下面浅谈下自己和团队怎么做的?后台架构:前置部门:负责接收别的公司推过来的数据,因为每天的数据量较大,且分布不均,使用十分钟推送一次报文的方式,使用batch框架进行数据落地,把落地成功的数据某个字段返回给调用端,让调用端验证是否已经全部落地成功的,保证数据的一致性!核心处理:使用了spr...
回答:一名合格的数据分析师应该掌握网页爬虫:Python或R数据存储:Excel或者Tableau、MangoDB等数据清洗:数据缺失处理等数据分析:线性回归等数据可视化:Python或R的可视化包进阶级数据分析师:统计知识运筹学知识机器学习知识掌握以上三个技能点便可称之为数据科学家至于面试要准备些啥?Simply按照上面技能点一一准备但是今天要说的是一项奇淫技巧那就是--写一篇数据分析的推文在这篇推文...
回答:Sql执行原理大致分为四步:第一步,客户端把语句发给服务器端执行:所有的SQL语句都是在客户端进程产生的,在服务器进程执行的。第二步,语句解析:客户端把SQL语句传送到服务器后,服务器进程会对该语句在服务器上进行解析,这个时候服务器进程会对于SQL语句进行这几项操作:查询高速缓存、语句合法性检查、语言含义检查也就是词法分析器、然后对获得对象进行解析锁、再核对数据访问权限、最后确定最佳执行计划。第三...
回答:使用SQL处理数据时,数据会在数据库内直接进行处理,而且sql处理本身可以对sql语句做优化,按照最优的策略自动执行。使用Java处理时,需要把数据从数据库读入到Java程序内存,其中有网络处理和数据封装的操作,数据量比较大时,有一定的延迟,所以相对来说数据处理就慢一些。当然,这个只是大体示意图,实际根据业务不同会更复杂。两者侧重的点不同,有各自适合的业务领域,需要根据实际情况选用合适的方式。
回答:一、HadoopHadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的,此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。二、SPSS统计软件 它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要是掌握一定的 Windows操作技能,粗通统计分析原理,就可以...
回答:其实根本就没有什么数据分析师,或者说,人人都是数据分析师。懂我这个意思吗?我的文章里,也写过很多数据行业的知识,你可以去看看,其实有时候想想,你就不一定非得从事这样的行业了。就拿数据挖掘来说吧,据我所知,厂商今年都混的不怎么样,为什么?客户需求很少,而且都是定制化的,整个项目的周期很长。还有就是一个企业里,互联网公司可能还好一点,数据分析师根本不需要那么多,你看看ucloud的数据分析报录比,20...
本文为CDA数据分析研究院原创作品,转载需授权 1.为什么选择Python进行数据分析? Python是一门动态的、面向对象的脚本语言,同时也是一门简约,通俗易懂的编程语言。Python入门简单,代码可读性强,一段好的Python代码,阅...
...云技术的发展指出了捷径。他们二人一致认为, 大数据与分析学前沿是个活动目标,这一领域包含了储存原始数据的数据湖和云计算。尽管这些技术并未成熟,但等待也并非上策。 Loconzolo表示:现实的情况是,这些工具都刚刚...
...题是什么,问题在哪,完全是以数据为驱动,通过大数据分析发现问题、解决问题 ② 思维方式的变化⭐ 全样而非抽样 在之前,数据太多,无法保存和分析,统计学采用抽样,而现在,我们可以对所有数据进行分析 效率而...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...