回答:前几年我做过一个钢厂众多监测设备的数据釆集系统,用户界面是浏览器。数据库是postgresql,后台中间件是python写。因为釆集数据是海量的,所以所有数据通过多线程或multiprocessing,数据在存入数据库时,也传递给一个python字典,里面存放最新的数据。远程网页自动刷新时,通过CGI和socket,对于authorized的session ID,就可以直接从后台内存里的这个字典获...
最近,谷歌发布了一种把低分辨率图像复原为高分辨率图像的方法,参见机器之心文章《学界 | 谷歌新论文提出像素递归超分辨率:利用神经网络消灭低分辨率图像马赛克》。与较先进的方法相比,这篇论文提出了一种端到端...
...传感等领域,深度学习图像压缩算法的应用也将带来更高分辨率,更小存储空间,更少带宽成本。 这里附上TNG的测试链接,大家可以自行进行测试:http://www.tucodec.com/pictur...
...针对全局。比如基于MSE(Mean Squared Error)的方法用来生成超分辨率图像,容易出现下面的情况[4]:在这个二维示意中,真实数据分布在一个U形的流形上,而MSE系的方法因为loss的形式往往会得到一个接近平均值所在的位置(蓝色框...
...品变为塞尚的作品等等。 生成式对抗网络还可以利用低分辨率图像生成高分辨率图像,将航拍图变为照片,并可以完成各类照片处理任务。 Goodfellow表示:我们可以更改面部的各类特性,比如嘴唇颜色或者发型,但仍可以确...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...