回答:目前阶段大数据技术及体系已经逐渐趋于成熟,不再是以概念贯穿的模式,大数据越来越多的被使用,伴随互联网化的发展更多的企业信息化已经由IT时代转变为DT时代,以数据为核心,用数据进行决策,基于数据驱动企业的创新与发展,相信在将来大数据也会有更广泛的应用空间,对于大数据的理解主要分为以下几个层面。1.数据来源:对于大数据时代而言更多强调基于业务数据的沉淀,在一定规模的数据上进行进一步的分析、处理、转换,...
回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...
回答:近几年,大数据的概念逐渐深入人心,大数据的趋势越来越火爆。但是,大数据到底是个啥?怎么样才能玩好大数据呢?大数据的基本含义就是海量数据,麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。数字经济的要素之一就是大数据资源,现在大家聊得最多的大数据是基于已经存在的...
回答:随着大数据应用的逐渐落地,很多人都想从事大数据方面的工作,这其中自然就有很多非大数据相关专业(数学、计算机、统计学)的从业者,那么大数据到底能不能从零基础开始学呢?答案是肯定的,但是也要根据自身的知识结构来选择大数据的学习方向。大数据技术体系在2016年的时候已经趋于成熟,目前正处在落地应用的阶段,大数据的细分岗位比较多,自然也就需要具备不同的知识结构。大数据的岗位集中在数据采集、整理、存储、分析...
回答:大数据是处理海量数据的一种技术,你说的写SQL只能处理结构化数据,更多的是非结构化数据(文本数据),和半结构化数据。并且通过SQL处理的数据量一般很少,几个T就根本不行,大数据涉及存储(存储级别为PB级别),资源调度(一般是分布式系统,不是一台机器),计算框架(hadoop;storm;spark)这三部分,缺一不可,你说的写SQL只是相当于计算框架(勉强算得上,性能差远了)。
...,用户画像的概念也应运而生。用户画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。用户画像的建立能够帮助企业更好地为用户提...
...沟通都会产生大量记录,这些记录可能包括了客服的沟通数据(通话记录、通话小结),也可能包括了各式各样的报告数据(陪访报告、征信报告等)(见图1)。 图1 业务人员与客户产生沟通记录 前者可能口语会多一些,后者...
摘要:敏捷大数据智能化的主要目标就是,结合敏捷大数据实施理念,研发灵活的、轻量化的智能模型,并在敏捷大数据平台上对数据流进行实时智能化处理,最终实现一站式的大数据智能分析实践。 一、前言 人工智能的诞...
作者介绍画像数据产品@草帽小子《大数据实践之路:中台+分析+应用》核心作者专注用户画像,著有用户画像、标签体系等系列文章人人都是产品经理专栏作家数据人创作者联盟成员大家好,我是...
孔淼:大数据分析处理与用户画像实践 直播内容如下: 今天咱们就来闲聊下我过去接触过的数据分析领域,因为我是连续创业者,所以我更多的注意力还是聚焦在解决问题和业务场景上。如果把我在数据分析的经验进行划分...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...