回答:大数据需要开发功底,比如python语言,通过编程需要抓取数据。当然会前端需要比如Html,javascript,将抓取的数据整合后通过前端去展示。所以个人觉得学习一门开发语言是必须的。
回答:这个我有经验,我来答一下????♂️目前在我们数据行业内的日常用语中,数据分析和数据可视化这两个术语似乎已成为同义词。虽然说两者它都包含数据分析的内容,但实际上还是有一定的细微差别。就比如说数据分析:它更多的强调的是一个逻辑思维能力,强调的是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。而数据可视化分析:它就在数据分析的基础上涉...
回答:Hadoop是目前被广泛使用的大数据平台,Hadoop平台主要有Hadoop Common、HDFS、Hadoop Yarn、Hadoop MapReduce和Hadoop Ozone。Hadoop平台目前被行业使用多年,有健全的生态和大量的应用案例,同时Hadoop对硬件的要求比较低,非常适合初学者自学。目前很多商用大数据平台也是基于Hadoop构建的,所以Hadoop是大数据开发的一个重要内容...
回答:作为一名大数据方向的研究生导师,我来回答一下这个问题。从大数据的技术体系来看,主要涉及到三大方面的内容,其一是大数据平台;其二是大数据开发;其三是大数据分析,对于具有Java编程基础的人来说,学习大数据会相对容易一些,但是依然需要一个系统的学习过程,具体需要多长的学习时间取决于自身的学习计划、学习环境等因素。大数据的技术体系目前已经趋于成熟,而且大数据涉及到的知识量也比较庞大,所以应该找一个切入点...
回答:有风就跟风,很可能会死在风口上,什么都得不到。但如果是真的看到了价值想要寻求创业,那至少有这几个忠告。首先一定要坚持长期主义。大数据注定是个需要积淀和时间的产业,不管是数据的积淀,还是算法模型的演进,都需要大量的时间、金钱的投入。大数据产业在外界看来就是准不准的问题,没长期的试错验错,优化更新,怎么可能有产出?所以想要短期进入,赚快钱,还是算了吧。现在不是靠ppt就能忽悠投资的的时候了。其次,大数...
... SoftServe 进行了这项研究,调查了多个行业的决策者对大数据技术中的风险、挑战和机遇的看法。该数据显示,大数据分析技术尽管相对较新,仍然有 86% 的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,...
...造财富,只分配财富的行业。 1.为什么很多人进入IT/大数据行业? 工作这些年,参与和负责的面试人数在百人以上,也算见识过形形色色的面试者,有初出校园的大学生,有深入行业多年的佼佼者,有某个领域的专家...
深度神经网络能够焕发新春,大数据功不可没,然而大数据的版权是否应当延伸到深度学习产生的知识,这是一个现实的问题。本文通过ImageNet可视化大数据、Caffe共享深度学习模型和家中训练三个场景审查了深度学习的权值与...
...早期研究者和布道者,他的工作经历可以说同步了通用大数据平台到专用机器学习平台的转变历程。因此,在这之前,InfoQ对黄明的进行了一次采访问答,他将与大家分享人工智能时代的大数据平台演进之路,并结合Angel的开发...
...。」当话题转向「算法工程师的招聘」时,TalkingData 首席数据科学家张夏天不免面露难色起来。而在此之前,谈论起算法和数据挖掘等具体业务时,他还滔滔不绝、兴致勃勃。不只是张夏天,自去年 10 月以来,不止一位技术 Lead...
零基础学习hadoop开发先明白这层关系大数据hadoop无疑是当前互联网领域受关注热度最高的词之一,大数据技术的应用正在潜移默化中对我们的生活和工作产生巨大的改变。这种改变给我们的感觉是水到渠成,更为让人惊...
本报告旨在提供未来数据相关领域的职业机会概述。这份报告将有助于理解这些正在发展的技术带来的各种机遇和影响。 前言 Analytics Vidhya 2018是特殊的一年.我们看到来自实验室的人工智能和机器学习成为了我们日常生活的...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...