大数据挖掘与处理SEARCH AGGREGATION

首页/精选主题/

大数据挖掘与处理

大数据平台

...大数据基础服务平台,能够帮您快速构建起大数据的分析处理能力。 USDP 构建于 UCloud 的云服务上,无缝集成云端 IaaS 资源能力,通过自研的 USDP Manager 管理工具,支持用户创建资源独享的大数据集群,在集群中部署 Hadoop、Hive、...

大数据挖掘与处理问答精选

hadoop任务,给定数据量和处理逻辑(Sql、UDF等),如何预估计算时间与资源?有没有实际案例?

回答:首先明确下定义:计算时间是指计算机实际执行的时间,不是人等待的时间,因为等待时间依赖于有多少资源可以调度。首先我们不考虑资源问题,讨论时间的预估。执行时间依赖于执行引擎是 Spark 还是 MapReduce。Spark 任务Spark 任务的总执行时间可以看 Spark UI,以下图为例Spark 任务是分多个 Physical Stage 执行的,每个stage下有很多个task,task 的...

silenceboy | 1023人阅读

为什么SQL处理数据比Java快?

回答:使用SQL处理数据时,数据会在数据库内直接进行处理,而且sql处理本身可以对sql语句做优化,按照最优的策略自动执行。使用Java处理时,需要把数据从数据库读入到Java程序内存,其中有网络处理和数据封装的操作,数据量比较大时,有一定的延迟,所以相对来说数据处理就慢一些。当然,这个只是大体示意图,实际根据业务不同会更复杂。两者侧重的点不同,有各自适合的业务领域,需要根据实际情况选用合适的方式。

stefanieliang | 1928人阅读

你处理过的最大的数据量是多少?你是如何处理的?

回答:我是做JAVA后台开发的,目前为止最多处理过每天600万左右的数据!数据不算特别多,但是也算是经历过焦头烂额,下面浅谈下自己和团队怎么做的?后台架构:前置部门:负责接收别的公司推过来的数据,因为每天的数据量较大,且分布不均,使用十分钟推送一次报文的方式,使用batch框架进行数据落地,把落地成功的数据某个字段返回给调用端,让调用端验证是否已经全部落地成功的,保证数据的一致性!核心处理:使用了spr...

李增田 | 1315人阅读

大数据时代,如何理解“大数据”?

回答:目前阶段大数据技术及体系已经逐渐趋于成熟,不再是以概念贯穿的模式,大数据越来越多的被使用,伴随互联网化的发展更多的企业信息化已经由IT时代转变为DT时代,以数据为核心,用数据进行决策,基于数据驱动企业的创新与发展,相信在将来大数据也会有更广泛的应用空间,对于大数据的理解主要分为以下几个层面。1.数据来源:对于大数据时代而言更多强调基于业务数据的沉淀,在一定规模的数据上进行进一步的分析、处理、转换,...

arashicage | 1152人阅读

大数据开发、大数据分析、大数据运维主要工作各是什么?哪个好?

回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...

zhangxiangliang | 3259人阅读

php空间与数据库怎么配置

问题描述:关于php空间与数据库怎么配置这个问题,大家能帮我解决一下吗?

王晗 | 499人阅读

大数据挖掘与处理精品文章

  • 数据技术原理应用》第一章-数据概述

    ...解决问题代表企业第一次浪潮1980年前后个人计算机信息处理Intel、AMD、IBM、苹果、微软、联想、戴尔、惠普等第二次浪潮1995年前后互联网信息传输雅虎、谷歌、阿里巴巴、百度、腾讯等第三次浪潮2010年前后物联网、云计算和大...

    1fe1se 评论0 收藏0
  • 揭开数据云计算非同一般的关系

    ...云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。从结果来分析,云计算注重资源分配,大数据注重的是资源处理。一定程度上讲,大数据需要云计算支撑,云计算为大数据处理提供平台。  从二者的定义范围来...

    ashe 评论0 收藏0
  • 何为敏捷数据敏捷AI?

    ...能模型,并在敏捷大数据平台上对数据流进行实时智能化处理,最终实现一站式的大数据智能分析实践。 一、前言 人工智能的诞生可以追溯到上世纪50年代,在达特茅斯会议上,麦卡锡提出了AI的概念,但在初期的热度过后,人...

    X_AirDu 评论0 收藏0
  • Chapter1 数据概述

    ...用于生成决策的时间非常少。 1秒定律:这一点和传统的数据挖掘技术有着本质的不同。 (4)价值密度低,商业价值高: 如此大量的数据,很多可能都是没有价值的数据。比如监控摄像头时刻生成大量数据需要进行存储,一旦发...

    Dean 评论0 收藏0
  • 数据分析技术应用

    ...近EB量级。 2)Velocity(高速): 这是大数据区分于传统数据挖掘的最显著特征。根据IDC的数字宇宙的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。 天猫双十一...

    shinezejian 评论0 收藏0
  • 云计算和数据是什么?云计算和数据区别是什么?

    ...过互联网提供全球用户计算力、存储服务,为互联网信息处理提供硬件基础。云计算,简单说就是把你自己电脑里的或者公司服务器上的硬盘、CPU都放到网上,统一动态调用。 大数据是什么? 大数据的定义(麦肯锡全球研究...

    不知名网友 评论0 收藏0
  • 学习Hadoop数据基础框架

    ...据量早已超出 ZB(1ZB=1024EB,1EB=1024PB)级别。传统的数据处理方法是:随着数据量的加大,不断更新硬件指标,采用更加强大的CPU、更大容量的磁盘这样的措施,但现实是:数据量增大的速度远远超出了单机计算和存储能力提升...

    amc 评论0 收藏0

推荐文章

相关产品

<