回答:目前阶段大数据技术及体系已经逐渐趋于成熟,不再是以概念贯穿的模式,大数据越来越多的被使用,伴随互联网化的发展更多的企业信息化已经由IT时代转变为DT时代,以数据为核心,用数据进行决策,基于数据驱动企业的创新与发展,相信在将来大数据也会有更广泛的应用空间,对于大数据的理解主要分为以下几个层面。1.数据来源:对于大数据时代而言更多强调基于业务数据的沉淀,在一定规模的数据上进行进一步的分析、处理、转换,...
回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...
回答:近几年,大数据的概念逐渐深入人心,大数据的趋势越来越火爆。但是,大数据到底是个啥?怎么样才能玩好大数据呢?大数据的基本含义就是海量数据,麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。数字经济的要素之一就是大数据资源,现在大家聊得最多的大数据是基于已经存在的...
回答:随着大数据应用的逐渐落地,很多人都想从事大数据方面的工作,这其中自然就有很多非大数据相关专业(数学、计算机、统计学)的从业者,那么大数据到底能不能从零基础开始学呢?答案是肯定的,但是也要根据自身的知识结构来选择大数据的学习方向。大数据技术体系在2016年的时候已经趋于成熟,目前正处在落地应用的阶段,大数据的细分岗位比较多,自然也就需要具备不同的知识结构。大数据的岗位集中在数据采集、整理、存储、分析...
...施一站式解决实时读写、HTAP两大日志强需求;日志服务数据的开放性以及与云产品、开源社区相结合,在实时计算、可视化、采集上为用户提供的丰富选择。 Kubernetes日志处理的趋势与挑战 Kubernetes的serveless化 Kubernetes容器技术...
业务平台每天产生大量日志数据,为了实现数据分析,需要将生产服务器上的所有日志收集后进行大数据分析处理,Docker提供了日志驱动,然而并不能满足不同场景需求,本次将结合实例分享日志采集、存储以及告警等方面...
...hdfs 两个agent级联 Flume日志采集框架 在一个完整的离线大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有...
...道、环境、行为等参数开发难度大/成本高:为完成一次数据采集、分析需求,首先需要购买云主机,公网IP,开发数据接收服务器,消息中间件等,并且通过互备保障服务高可用;接下来需要开发服务端并进行测试使用不容易:...
...道、环境、行为等参数开发难度大/成本高:为完成一次数据采集、分析需求,首先需要购买云主机,公网IP,开发数据接收服务器,消息中间件等,并且通过互备保障服务高可用;接下来需要开发服务端并进行测试使用不容易:...
引言 一个完整的容器平台,容器日志都是很重要的一环。尤其在微服务架构大行其道状况下,程序的访问监控健康状态很多都依赖日志信息的收集,由于Docker的存在,让容器平台中的日志收集和传统方式很多不一样,日志的...
...容大多会是后端技术、前端工程、DevOps,偶尔会有一些大数据相关,会推荐一些好玩的东西。希望你会喜欢~ Nginx 由于其出色的性能,在互联网中被广泛应用,它通常会作为 HTTP 接入层负责分流及静态文件处理。因此,每天会产...
...布是一种特殊的线上环境,和线上使用同样的资源,比如数据库等,但是不会有用户流量进来)、然后灰度、然后分批滚动发布等方式,逐步将变更更新到线上,发布完成后,又会借助一些故障预警系统,例如像阿里有GOC来尽早...
...布是一种特殊的线上环境,和线上使用同样的资源,比如数据库等,但是不会有用户流量进来)、然后灰度、然后分批滚动发布等方式,逐步将变更更新到线上,发布完成后,又会借助一些故障预警系统,例如像阿里有GOC来尽早...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...