回答:干货预警,全文8888字,配图100+,阅读预计10分钟。赶时间的朋友点赞▲收藏★关注❤,方便以后再看。数据可视化分析工具一般分为软件类+网页类,对于兼具数据分析+可视化呈现,推荐大家从Excel入手,再学习其他数据分析工具。这里给大家推荐四个适合新手入门的可视化工具,给大家安利了2款软件和2个网站工具,通过接触这4款工具,也能快速做到举一反三,迅速上手其他可视化工具。工具1:Excel推荐Exc...
回答:当然非常不错,作为一门应用广泛的编程语言,python第三方库扩展丰富,针对数据可视化,提供了许多高效、简便的包可以直接使用,下面我简单介绍3个,分别是matplotlib、seaborn和pyecharts,感兴趣的朋友可以尝试一下:老牌工具matplotlib这是python一个非常著名的可视化工具,相信许多做过可视化的朋友都对matplotlib非常熟悉,专业强大、功能齐全、扩展丰富,几乎你...
回答:大数据的技术大数据技术包括:1)数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。2)数据存取: 关系数据库、NOSQL、SQL等。3)基础架构: 云存储、分布式文件存储等。4)数据处理: 自然语言处理(NLP,Natural Language Processin...
回答:这个我有经验,我来答一下????♂️目前在我们数据行业内的日常用语中,数据分析和数据可视化这两个术语似乎已成为同义词。虽然说两者它都包含数据分析的内容,但实际上还是有一定的细微差别。就比如说数据分析:它更多的强调的是一个逻辑思维能力,强调的是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。而数据可视化分析:它就在数据分析的基础上涉...
回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...
回答:谢邀~本君自荐一下。我们的产品诸葛io(www.zhugeio.com)可能更偏向于非技术人员的业务分析,比如产品经理、市场、运营人员。从某种意义上也具有可视化分析的特性,但区别于其他工具的是我们面向互联网产品推广运营过程中的分析需求定义了一些分析模型,比如事件、漏斗、自定义留存、粘性、用户分群等,很多工具可以任意拖拽去做分析,但很多时候客户也会因为太灵活反而有一定门槛,所以,当一些模型被标准化以...
摘要: 在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析。大会现场的精彩分享也赢得观众们的一直认可和热烈的反响。 大数据分析之路的挑战与期望 ...
摘要: 在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析。大会现场的精彩分享也赢得观众们的一直认可和热烈的反响。 大数据分析之路的挑战与期望 ...
...文从基本概念、行业趋势、学习途径等几个方面介绍了大数据的相关内容,适合对大数据感兴趣的读者作为入门材料阅读。 随着科技的发展,目前已经步入了大数据的时代,很多社交媒体和互联网公司也非常关注大数据这一行...
...更多网易技术产品运营经验。 在回答小企业是否需要数据分析这个问题之前,不妨先想想下面两个问题: 你在电脑上建过表格吗? 你基于表格中的数据画过柱形图、饼状图、折线图吗? 可能你没又意识到,这些操作已经...
...我们往往更关注的是朴实的技术特性和解决方案。对于大数据,未来的应用趋势不可抵挡,很多企业也正存在大数据分析处理展现的需求,以下我们列举市面上主流的三款BI系统,就大数据特性展开探讨,主要是与Hadoop、Spar...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...