回答:大数据是处理海量数据的一种技术,你说的写SQL只能处理结构化数据,更多的是非结构化数据(文本数据),和半结构化数据。并且通过SQL处理的数据量一般很少,几个T就根本不行,大数据涉及存储(存储级别为PB级别),资源调度(一般是分布式系统,不是一台机器),计算框架(hadoop;storm;spark)这三部分,缺一不可,你说的写SQL只是相当于计算框架(勉强算得上,性能差远了)。
回答:当然不只是SQL,SQL顾名思义,(Structured Query Language)结构化查询语言,只是你执行增删改查操作的语言工具而已,而实际的学习中不止于此一、如果单纯为了实现业务结合实际项目的话,按照流程走,学习路线可以分为以下几步数据库表设计数据库选型索引设计SQL优化维护及数据安全二、如果还要学习数据库实现 数据库原理的书有很多,看过几本,觉得「MySQL技术内幕 InnoDB存储引...
回答:目前阶段大数据技术及体系已经逐渐趋于成熟,不再是以概念贯穿的模式,大数据越来越多的被使用,伴随互联网化的发展更多的企业信息化已经由IT时代转变为DT时代,以数据为核心,用数据进行决策,基于数据驱动企业的创新与发展,相信在将来大数据也会有更广泛的应用空间,对于大数据的理解主要分为以下几个层面。1.数据来源:对于大数据时代而言更多强调基于业务数据的沉淀,在一定规模的数据上进行进一步的分析、处理、转换,...
回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...
回答:近几年,大数据的概念逐渐深入人心,大数据的趋势越来越火爆。但是,大数据到底是个啥?怎么样才能玩好大数据呢?大数据的基本含义就是海量数据,麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。数字经济的要素之一就是大数据资源,现在大家聊得最多的大数据是基于已经存在的...
回答:随着大数据应用的逐渐落地,很多人都想从事大数据方面的工作,这其中自然就有很多非大数据相关专业(数学、计算机、统计学)的从业者,那么大数据到底能不能从零基础开始学呢?答案是肯定的,但是也要根据自身的知识结构来选择大数据的学习方向。大数据技术体系在2016年的时候已经趋于成熟,目前正处在落地应用的阶段,大数据的细分岗位比较多,自然也就需要具备不同的知识结构。大数据的岗位集中在数据采集、整理、存储、分析...
大数据正在彻底改变IT世界。那么,什么样的数据谈得上数据呢? 根据IDC的报告,未来十年全球大数据将增加50倍。仅在2011年,我们就将看到1.8ZB(也就是1.8万亿GB)的大数据创建产生。这相当于每位美国人每分钟写3条Tweet,而...
大数据正在彻底改变IT世界。那么,什么样的数据谈得上数据呢? 根据IDC的报告,未来十年全球大数据将增加50倍。仅在2011年,我们就将看到1.8ZB(也就是1.8万亿GB)的大数据创建产生。这相当于每位美国人每分钟写3条...
对于一家自身组织运行历史数十年的公司来说,数据仓库会是一种有效帮助其报告和理解相关操作的方式。在数据仓库出现之前,对来自不同系统的数据进行报告与收集是一项昂贵、耗时而且常常徒劳无功的尝试,而数据仓库保...
...迎访问网易云社区,了解更多网易技术产品运营经验。 数据仓库作为企业提供决策支持而构建的集成化数据环境,本身并不产生或者消费数据,基本架构包含的是数据流入流出的过程,首先放上一张数据仓库的架构图。数据仓...
...构佛瑞斯特研究公司(Forrester)发布《2018年一季度云端数据仓库》报告。报告对大数据服务商的主要功能、区域表现、细分市场和典型客户等进行了全面评估,最终AWS、阿里云、谷歌、微软四大巨头杀入全球一线阵营。 参考消...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...