回答:大数据的技术大数据技术包括:1)数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。2)数据存取: 关系数据库、NOSQL、SQL等。3)基础架构: 云存储、分布式文件存储等。4)数据处理: 自然语言处理(NLP,Natural Language Processin...
回答:这个我有经验,我来答一下????♂️目前在我们数据行业内的日常用语中,数据分析和数据可视化这两个术语似乎已成为同义词。虽然说两者它都包含数据分析的内容,但实际上还是有一定的细微差别。就比如说数据分析:它更多的强调的是一个逻辑思维能力,强调的是一个探索性的过程,通常从特定的问题开始。它需要好奇心、寻找答案的欲望和很好的韧性,因为这些答案并不总是容易得到的。而数据可视化分析:它就在数据分析的基础上涉...
回答:在大数据领域大概有四个大的工作方向,除了大数据平台应用及开发、大数据分析与应用和大数据平台集成与运维之外,还有大数据平台架构与研发,除了以上四个大的工作方向之外,还有一个工作方向是大数据技术推广和培训,这部分工作目前也有不少人在从事。大数据平台架构与研发主要的工作内容是研发底层的大数据平台,这部分工作的难度较高,从事这部分工作的研发级岗位也并不多。现在不少技术研发团队都以Hadoop、Spark平...
回答:谢邀~本君自荐一下。我们的产品诸葛io(www.zhugeio.com)可能更偏向于非技术人员的业务分析,比如产品经理、市场、运营人员。从某种意义上也具有可视化分析的特性,但区别于其他工具的是我们面向互联网产品推广运营过程中的分析需求定义了一些分析模型,比如事件、漏斗、自定义留存、粘性、用户分群等,很多工具可以任意拖拽去做分析,但很多时候客户也会因为太灵活反而有一定门槛,所以,当一些模型被标准化以...
回答:真利益相关,不请自来,人在中国,刚下...算了,在办公室。帆软,其实大家不知道他是国内做数据分析产品最好的公司。在企业数据分析领域低调做了十几年,入选Gartner市场指南。一开始做报表工具finereport,后来研发BI商业智能finebi,产品打磨了好多年。之后又增值行业化的数据管理解决方案,包括阿米巴经营管理,数字化运营体系搭建项目,很成熟很老牌的厂商。FineReport报表软件是一款纯...
回答:这个太范化了吧。大数据架构选择的方案就有很多,海量数据的即席查询本省就是业内目前的痛点,暂时没有太好的解决方案,kylin等框架也只是一个折中方案,如果你不是要求海量数据分析的秒级响应的话sparkSql、presto等都是不错的方案,分钟级别可以返回。
...PU 是要按量付费。我觉得这个就很合理了,将历史的明细数据作为冷存放入到对象存储中,只需要将近期数据和热点数据放在 HDFS 或者其他 OLAP 存储里,可以极大地压低大数据量公司的存储成本廉价的不稳定机型,这也是当时让...
...CAT系统(CASMACAT),通过对大量译员的实际使用情况进行数据统计,并结合眼部跟踪(eye tracking)等认知分析,证明这些新的CAT方法的确能够提升译员的工作效率,提升产出。 总体上,这个报告的内容属于比较偏应用型的工作...
...U训练的原因是计算量太大,只能拆开来。要点使用ImageNet数据训练网络,ImageNet数据库含有1500多万个带标记的图像,超过2.2万个类别。使用ReLU代替传统正切函数引入非线性(ReLU比传统正切函数快几倍,缩短训练时间)。使用了...
...一。Paragios 接着写道,如果这只是因为近年来计算力和大数据崛起推动所致,那么这股热潮自会过去,计算机视觉也会遵循计算机图形的发展轨迹,从活动和学术研究的量上说,逐渐成为一门边缘学科。 如果不是的话,Paragios ...
...颈中挤压出去一般,去除掉那些含有无关细节的噪音输入数据,只保留与通用概念(general concept)最相关的特征。Tishby和他的学生Ravid Shwartz-Ziv的实验,展示了深度学习过程中这种挤压是如何发生的(至少在他们所研究的案...
...和 semanticscholar.org 的引用量。由于不同搜索引擎的引用量数据各不相同,所以我们在这里仅列出了微软学术的数据,其数据比其它两家稍低一点。我们还给出了每篇论文的发表时间、高度有影响力的引用数量(HIC)和引用速度(...
...一系列的张量变换。从图像、视频、音频、文字等等原始数据中,通过一系列张量变换,筛选出特征数据,以便完成识别、分解、翻译等等任务。譬如原始数据是 28 x 28 的黑白图像,每个黑白像素可以用 8 个 bits 来表达,那么这...
...在医学图像分析领域应用的概念、最近出现的常用方法、数据集、面临挑战和可能的未来方向其参考了近几年三百多篇文献,值得医学影像处理领域的学者与工程技术人员参考。深度学习基础该论文首先从深度学习的基础概念介...
...现在图像的某个位置。当然,这不能违反分布的学习统计数据(我们不能强迫门出现在天空中)。另一个限制来自这样的事实,即某些对象固有地链接到某些位置,因此无法从图像中删除它们。例如:人们不能简单地从会议大厅...
...,这不是大脑工作的方式,很明显我们并不需要标注所有数据。」axios 文章中 Hinton「摈弃一切,从头再来」的观点,在推特上引起了热烈反响,Pedro Domingos、李飞飞等多人转推。李飞飞评论道:「反向传播非常重要,它就像是飞...
...级的密集预测能力。目前用于语义分割研究的两个最重要数据集是VOC2012和MSCOCO。VOC2012:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/MSCOCO:http://mscoco.org/explore/有哪些方法?在深度学习应用到计算机视觉领域之前,研究人员一般使用纹理...
...数。但是,这个层可能是非常大的,而且网络容易过拟合数据。因此,研究界有一个共同的趋势,就是网络架构需要更深。从 AlexNet 的提出以来,state-of-the art 的 CNN 架构都是越来越深。虽然 AlexNet 只有 5 层卷积层,但后来的 VGG ...
...而 DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。然而 DNN 获得出众准确率的代价是高计算复杂性...
...。在GAN框架内的关键思想是,生成器试图产生真实的合成数据,使得鉴别器无法区分真实数据和合成数据。他们定义了一个时空学习目标,旨在实现暂时连贯的视频。结果非常惊人,如下面的图片所示:输入视频位于左上象限,...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...